Skip to main content
Log in

Curbed Reactivity of Co-doped (Nb5+ and Rh3+) Catalyst in the Dry Reformation of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the dry reforming of methane (DRM), metal doping is used as one of the important methods to modulate the catalyst performance. In this paper, we synthesized two types of catalysts, Rh doped TiO2 (RTO) and Rh/Nb co-doped TiO2 (RNTO), and evaluated their performances in DRM. The CH4 and CO2 conversion of 79% and 95% in RTO were both higher than that in RNTO (the CH4 and CO2 conversion of 73% and 87%) as working for 80 h. The characterizations of XRD, TEM, XPS, EPR, BET, and TPR were carried out to determine the structure of catalysts. We found that the creation of the oxygen vacancies is favorable in Rh solely doped TiO2 but restricted by Rh/Nb co-doping. The XPS results verified that Rh4+ and Rh3+ were presented in RTO, while only Rh3+ can be observed in RNTO. Due to the co-doping of Nb, the Rh induced charge perturbation was balanced by Nb5+ rather than the deprivation of electrons from O2−, therefore the state of Rh3+ was stabilized and the content of oxygen vacancies were decreased which resulted in attenuated activity in the DRM reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li S, Zhang G, Wang J, Liu J, Lv Y (2021) Int J Hydrog Energy 46:28613–28625

    Article  CAS  Google Scholar 

  2. Yuan B, Zhu T, Han Y, Zhang X, Wang M, Li C (2023) Atmosphere 14:770

    Article  CAS  Google Scholar 

  3. Wu J, Qiao L-Y, Zhou Z-F, Cui G-J, Zong S-S, Xu D-J, Ye R-P, Chen R-P, Si R, Yao Y-G (2018) ACS Catal 9:932–945

    Article  Google Scholar 

  4. Wang HY, Ruckenstein E (2000) Appl Catal A-Gen 204:143–152

    Article  CAS  Google Scholar 

  5. Al-Fatesh AS, Patel N, Fakeeha AH et al (2023) Reforming of methane: effects of active metals, supports, and promoters. Catal Rev-Sci Eng 1–99

  6. Deng J, Bu K, Shen Y, Zhang X, Zhang J, Faungnawakij K, Zhang D (2022) Appl Catal B-Environ 302:120859

    Article  CAS  Google Scholar 

  7. Akri M, Zhao S, Li X, Zang K, Lee AF, Isaacs MA, Xi W, Gangarajula Y, Luo J, Ren Y, Cui YT, Li L, Su Y, Pan X, Wen W, Pan Y, Wilson K, Li L, Qiao B, Ishii H, Liao YF, Wang A, Wang X, Zhang T (2019) Nat Commun 10:5181

    Article  PubMed  PubMed Central  Google Scholar 

  8. Charisiou N, Douvartzides S, Siakavelas G, Tzounis L, Sebastian V, Stolojan V, Hinder S, Baker M, Polychronopoulou K, Goula M (2019) Catalysts 9:650

    Article  CAS  Google Scholar 

  9. Mateos-Pedrero C, González-Carrazán SR, Soria MA, Ruíz P (2013) Catal Today 203:158–162

    Article  CAS  Google Scholar 

  10. Kondratenko VA, Karimova U, Kasimov AA, Kondratenko EV (2021) Appl Catal A-Gen 619:118143

    Article  CAS  Google Scholar 

  11. Barroso-Quiroga MM, Castro-Luna AE (2010) Int J Hydrog Energy 35:6052–6056

    Article  CAS  Google Scholar 

  12. Mancino G, Cimino S, Lisi L (2016) Catal Today 277:126–132

    Article  CAS  Google Scholar 

  13. Bitter JH, Seshan K, Lercher JA (2000) Top Catal 10:295–305

    Article  CAS  Google Scholar 

  14. Saleh J, Al-Fatesh AS, Ibrahim AA, Frusteri F, Abasaeed AE, Fakeeha AH, Albaqi F, Anojaidi K, Alreshaidan SB, Albinali I, Al-Rabiah AA, Bagabas A (2023) Nanomaterials 13:547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee S, Bae M, Bae J, Katikaneni SP (2015) Int J Hydrog Energy 40:3207–3216

    Article  CAS  Google Scholar 

  16. Shoynkhorova TB, Simonov PA, Potemkin DI, Snytnikov PV, Belyaev VD, Ishchenko AV, Svintsitskiy DA, Sobyanin VA (2018) Appl Catal B-Environ 237:237–244

    Article  CAS  Google Scholar 

  17. Haynes DJ, Berry DA, Shekhawat D, Spivey JJ (2008) Catal Today 136:206–213

    Article  CAS  Google Scholar 

  18. Iwashina K, Kudo A (2011) J Am Chem Soc 133:13272–13275

    Article  CAS  PubMed  Google Scholar 

  19. Shen PC, Lofaro JC, Woerner WR, White MG, Su D, Orlov A (2013) Chem Eng J 223:200–208

    Article  CAS  Google Scholar 

  20. Lee C-W, Antoniou Kourounioti R, Wu JCS, Murchie E, Maroto-Valer M, Jensen OE, Huang C-W, Ruban A (2014) J CO2 Util 5:33–40

    Article  CAS  Google Scholar 

  21. Wang J, Sun H, Huang J, Li Q, Yang J (2014) J Phys Chem C 118:7451–7457

    Article  CAS  Google Scholar 

  22. Kuncewicz J, Ohtani B (2015) Chem Commun 51:298–301

    Article  Google Scholar 

  23. Kuncewicz J, Ohtani B (2016) RSC Adv 6:77201–77211

    Article  CAS  Google Scholar 

  24. Neuberg S, Pennemann H, Shanmugam V, Zapf R, Kolb G (2021) Catal Commun 149:106202

    Article  CAS  Google Scholar 

  25. Huang J, Li G, Zhou Z, Jiang Y, Hu Q, Xue C, Guo W (2018) Chem Eng J 337:282–289

    Article  CAS  Google Scholar 

  26. Oropeza FE, Egdell RG (2011) Chem Phys Lett 515:249–253

    Article  CAS  Google Scholar 

  27. Ghuman KK, Singh CV (2013) J Phys-Condes Matter 25:085501

    Article  Google Scholar 

  28. Marinho ALA, Rabelo-Neto RC, Epron F, Bion N, Toniolo FS, Noronha FB (2020) Appl Catal B-Environ 268:118387

    Article  CAS  Google Scholar 

  29. Fu Y, Kong W, Pan B, Yuan C, Li S, Zhu H, Zhang J (2021) J Environ Chem Eng 9:105790

    Article  CAS  Google Scholar 

  30. Claus P, Schimpf S, Schödel R, Kraak P, Mörke W, Hönicke D (1997) Appl Catal A-Gen 165:429–441

    Article  CAS  Google Scholar 

  31. Salama TM, Hattori H, Kita H, Ebitani K, Tanaka T (1993) J Chem Soc 89:2067–2073

    CAS  Google Scholar 

  32. Chen W, Xu J, Huang F, Zhao C, Guan Y, Fang Y, Hu J, Yang W, Luo Z, Guo Y (2023) Appl Surf Sci 618:156539

    Article  CAS  Google Scholar 

  33. Hou L, Zhang M, Guan Z, Li Q, Yang J (2018) Appl Surf Sci 428:640–647

    Article  CAS  Google Scholar 

  34. Sun X-y (2018) Liu C, Chen Z, Ma Y-q. Mater Res Bull 100:153–160

    Article  CAS  Google Scholar 

  35. Xu L, Ming L, Chen F (2015) ChemCatChem 7:1797–1800

    Article  CAS  Google Scholar 

  36. Bi X, Du G, Kalam A, Sun D, Yu Y, Su Q, Xu B, Al-Sehemi AG (2021) Chem Eng Sci 234:116440

    Article  CAS  Google Scholar 

  37. Wang B, Zhang M, Cui X, Wang ZW, Rager M, Yang YK, Zou ZG, Wang ZL, Lin ZQ (2020) Angew Chem-Int Edit 59:1611–1618

    Article  CAS  Google Scholar 

  38. Wang XH, Lu L, Wang B et al (2018) Frustrated lewis pairs accelerating CO2 reduction on oxyhydroxide photocatalysts with surface lattice hydroxyls as a solid-state proton donor. Adv Funct Mater 28:1804191

    Article  Google Scholar 

  39. Sutthiumporn K, Kawi S (2011) Int J Hydrog Energy 36:14435–14446

    Article  CAS  Google Scholar 

  40. Ghodke SR, Thundiyil S, Dongapure P, Nandini Devi R (2022) Mol Catal 522:112242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this work was provided by the NSF of China (U23B20164), the National Key Research and Development Project of China (2022YFA1503900), the National Key R&D Program of China (2018YFA0704502), the Self-deployment Project Research Program of Haixi Institutes, Chinese Academy of Sciences (CXZX-2022-GS03, CXZX-2022-GH05).

Author information

Authors and Affiliations

Authors

Contributions

An Lin: Conceptualization, Data curation, Investigation, Writing—original draft, Writing—review & editing. Lu-Yang Qiao: Conceptualization, Methodology, Writing—review & editing. Shan-Shan Zong: Data curation, Methodology. Zheng Liu: Writing—review & editing. Wei Lv: Writing—review & editing. Ji-Quan Huang: Data curation. Zhang-Feng Zhou: Conceptualization, Resources, Supervision, Project administration, Writing—review & editing. Yuan-Gen Yao: Supervision, Writing – review & editing, Funding acquisition.

Corresponding authors

Correspondence to Shan-Shan Zong or Yuan-Gen Yao.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 949 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, A., Qiao, LY., Zong, SS. et al. Curbed Reactivity of Co-doped (Nb5+ and Rh3+) Catalyst in the Dry Reformation of Methane. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04679-x

Keywords

Navigation