Skip to main content
Log in

One-step Synthesis of ZnIn2S4/Ti3C2Tx Hybrids for Efficient Photodegradation of Organic Pollutants

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

ZnIn2S4 has drawn increasing attention in the field of photocatalysis due to its low price, high stability, and ease of availability, as well as its visible light response and ordered nanostructure characteristics. However, the low surface area and limited photogenerated-exciton separation efficiency of pure ZnIn2S4 hinder the further improvement of photocatalytic activity. To address these issues, Ti3C2Tx is in-situ integrated with the ZnIn2S4 through a one-step hydrothermal method, that can simultaneously regulate the catalytic active sites, energy level alignment, and charge transfer channel to enhance the photocatalytic performance. The Ti3C2Tx parts are directionally distributed on surface of those flower-like ZnIn2S4 microspheres for improving the photogenerated carrier generation/separation and reducing the carrier’s recombination during the photocatalytic process. Additionally, Ti3C2Tx promotes the flower-like microspheres of ZnIn2S4 to "bloom" and consequently increase the surface-active sites. As a result, the photocatalytic degradation rate of organic pollutants is increased by two times after surface functionalization of ZnIn2S4. This work provides a new structural design method to construct more efficient catalysts for organic pollutants and brings the understanding of the specific relationship between structure and photocatalytic performance.

Graphical Abstract

The photocatalytic degradation rate of organic pollutants was increased by two times after the integration of ZnIn2S4 with Ti3C2TX through a one-step hydrothermal method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Chi LP, Niu ZZ, Zhang XL, Yang PP, Liao J, Gao FY, Wu ZZ, Tang KB, Gao MR (2021) Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nat Commun 12(1):5835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. He Y, Chen C, Liu Y, Yang Y, Li C, Shi Z, Han Y, Feng S (2022) Quantitative evaluation of carrier dynamics in full-spectrum responsive metallic ZnIn2S4 with indium vacancies for boosting photocatalytic CO2 reduction. Nano Lett 22(12):4970–4978

    Article  CAS  PubMed  Google Scholar 

  3. Li Z, Hou J, Zhang B, Cao S, Wu Y, Gao Z, Nie X, Sun L (2019) Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting. Nano Energy 59:537–544

    Article  CAS  Google Scholar 

  4. Jiao X, Chen Z, Li X, Sun Y, Gao S, Yan W, Wang C, Zhang Q, Lin Y, Luo Y, Xie Y (2017) Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J Am Chem Soc 139(22):7586–7594

    Article  CAS  PubMed  Google Scholar 

  5. Wang S, Guan BY, Lou XW (2018) Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J Am Chem Soc 140(15):15145

    Article  CAS  PubMed  Google Scholar 

  6. Cai M, Du B, Shui A, He C (2023) Fabrication of hierarchical hollow BiOBr@ZnIn2S4 heterojunction to enhance the visible-light-driven photodegradation of dyes. Appl Surf Sci 612:155807

    Article  CAS  Google Scholar 

  7. Lei P, Duan H, Qin L, Wei X, Tao R, Wang Z, Guo F, Song M, Jie W, Hao J (2022) High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses. Adv Funct Mater 32(25):2201276

    Article  CAS  Google Scholar 

  8. Li Q, Chang J, Wang Z, Lu M, Guo C, Zhang M, Yu T, Chen Y, Li SL, Lan YQ (2023) Modulated connection modes of redox units in molecular junction covalent organic frameworks for artificial photosynthetic overall reaction. J Am Chem Soc 145(42):23167–23175

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Zhang Z, Zhang L, Luo Z, Shen J, Lin H, Long J, Wu JCS, Fu X, Wang X, Li C (2018) Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J Am Chem Soc 140(44):14595–14598

    Article  CAS  PubMed  Google Scholar 

  10. Ma Q, Yan C, Lv W, Mei Y, Peng H, Du J, Zheng B, Guo Y (2023) Coexisting chloride ion for boosting the photoelectrocatalytic degradation efficiency of organic dyes. Catal Lett 153(2):378–387

    Article  CAS  Google Scholar 

  11. Zhang Z, Huang Y, Liu K, Guo L, Yuan Q, Dong B (2015) Multichannel-improved charge-carrier dynamics in well-designed hetero-nanostructural plasmonic photocatalysts toward highly efficient solar-to-fuels conversion. Adv Mater 27(39):5906–5914

    Article  CAS  PubMed  Google Scholar 

  12. Chankhanittha T, Komchoo N, Senasu T, Piriyanon J, Youngme S, Hemavibool K, Nanan S (2021) Silver decorated ZnO photocatalyst for effective removal of reactive red azo dye and ofloxacin antibiotic under solar light irradiation. Colloids Surf A Physicochem Eng Asp 626:127034

    Article  CAS  Google Scholar 

  13. Narenuch T, Senasu T, Chankhanittha T, Nanan S (2021) Sunlight-active BiOI photocatalyst as an efficient adsorbent for the removal of organic dyes and antibiotics from aqueous solutions. Molecules 26(18):5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sansenya T, Masri N, Chankhanittha T, Senasu T, Piriyanon J, Mukdasai S, Nanan S (2022) Hydrothermal synthesis of ZnO photocatalyst for detoxification of anionic azo dyes and antibiotic. J Phys Chem Solids 160:110353

    Article  CAS  Google Scholar 

  15. Huang K, Li C, Meng X (2020) In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. J Colloid and Interf Sci 580:669–680

    Article  CAS  Google Scholar 

  16. Tao X, Zhao Y, Wang S, Li C, Li R (2022) Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem Soc Rev 51:3561–3608

    Article  CAS  PubMed  Google Scholar 

  17. Piriyanon J, Takhai P, Patta S, Chankhanittha T, Senasu T, Nijpanich S, Juabrum S, Chanlek N, Nanan S (2021) Performance of sunlight responsive WO3/AgBr heterojunction photocatalyst toward degradation of Rhodamine B dye and ofloxacin antibiotic. Opt Mater 121:111573

    Article  CAS  Google Scholar 

  18. Wang F, Huang F, Yu F, Kang X, Wang Q, Liu Y (2023) Metal-sulfide photocatalysts for solar-fuel generation across the solar spectrum. Cell Rep Phys Sci 4(6):101450

    Article  CAS  Google Scholar 

  19. Shu T, Wang M, Hu J, Ge X, Liang Y (2023) Macro-sized hierarchical nanostructured TiO2/titanosilicate composite with enhanced photocatalytic activity. Catal Lett 153(9):2592–2603

    Article  CAS  Google Scholar 

  20. Gao T, Zhang Q, Li L, Zhou X, Li L, Li H, Zhai T (2018) 2D ternary chalcogenides. Adv Opt Mater 6:00058

    Article  Google Scholar 

  21. Wang L, Hu P, Long Y, Liu Z, He X (2017) Recent advances in ternary two-dimensional materials: synthesis, properties and applications. J Mater Chem A 5:22855

    Article  CAS  Google Scholar 

  22. Kulkarni P, Nataraj SK, Balakrishna RG, Nagaraju DH, Reddy MV (2017) Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J Mater Chem A 5(42):22040–22094

    Article  CAS  Google Scholar 

  23. Weng S, Zhen W, Li Y, Yan X, Han H, Huang H, Pi L, Zhu W, Li H, Zhang C (2020) Air-stable wide-bandgap 2D semiconductor ZnIn2S4. Phy Status Solidi-R 14:00085

    Google Scholar 

  24. Zheng Z, Yao J, Li W, Huang L, Xiao Y, Mu Z, Yang G, Li J (2018) Fabrication of a high performance ZnIn2S4/Si heterostructure photodetector array for weak signal detection. J Mater Chem C 6:12928

    Article  CAS  Google Scholar 

  25. Shao M, Wei M, Evans DG, Duan X (2015) Photocatalysis layered materials. In: structure and bonding. vol 166. Springer, Cham pp 105–146

  26. Dong W, Zhou S-A, Ma Y, Chi D-J, Chen R, Long H-M, Chun T-J, Liu S-J, Qian F-P, Zhang K (2023) N-doped C-coated MoO2/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen production. Rare Met 42(4):1195–1204

    Article  CAS  Google Scholar 

  27. Meng S, Chen C, Gu X, Wu H, Meng Q, Zhang J, Chen S, Fu X, Liu D, Lei W (2021) Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Appl Catal B 285:119789

    Article  CAS  Google Scholar 

  28. Yin X, Lv B, Kang Y, Xu X, Lei X, Li L, Wang H, Xi H, Yang J, Yang Z (2023) Solvent-induced ZnIn2S4 nanosheets self-assembled micro-flowers to boosting the photocatalytic semi-dehydrogenation of 1,2,3,4-tetrahydroisoquinoline. Catal Lett 153(2):570–583

    Article  CAS  Google Scholar 

  29. Shi X, Mao L, Yang P, Zheng H, Fujitsuka M, Zhang J, Majima T (2020) Ultrathin ZnIn2S4 nanosheets with active (110) facet exposure and efficient charge separation for cocatalyst free photocatalytic hydrogen evolution. Appl Catal B 265:118616

    Article  CAS  Google Scholar 

  30. Wang S, Guan BY, Wang X, Lou XWD (2018) Formation of hierarchical Co(9)S(8)@ZnIn(2)S(4) heterostructured cages as an efficient photocatalyst for hydrogen evolution. J Am Chem Soc 140(45):15145–15148

    Article  CAS  PubMed  Google Scholar 

  31. Xiong Z, Hou Y, Yuan R, Ding Z, Ong W-J, Wang S (2022) Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta Phys -Chim Sin 38(7):2111021

    Google Scholar 

  32. Zhou M, Li S, Wang S, Jiang Z, Yang C, Guo F, Wang X, Ho W-k (2022) Anchoring ZnIn2S4 nanosheets on ultrathin boron carbon nitride layers for improved photo-redox catalysis. Appl Surf Sci 599:153985

    Article  CAS  Google Scholar 

  33. Zhang Z, Chen X, Hao R, Feng Q, Xie E (2023) Van der waals heterojunction modulated charge collection for H2O2 production photocathode. Adv Funct Mater 33(34):2303391

    Article  CAS  Google Scholar 

  34. Yang R, Zhu Z, Hu C, Zhong S, Zhang L, Liu B, Wang W (2020) One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chem Eng J 390:124522

    Article  CAS  Google Scholar 

  35. Yang R, Zhong S, Zhang L, Liu B (2020) PW12/CN@Bi2WO6 composite photocatalyst prepared based on organic-inorganic hybrid system for removing pollutants in water. Sep Purif Technol 235:116270

    Article  CAS  Google Scholar 

  36. Wang Y, Ding K, Xu R, Yu D, Wang W, Gao P, Liu B (2020) Fabrication of BiVO4/BiPO4/GO composite photocatalytic material for the visible light-driven degradation. J Clean Prod 247:119108

    Article  CAS  Google Scholar 

  37. Li J, Hu C, Liu B, Liu Z (2023) Dual pathway reduction of Mo4+ and photogenerated electrons restore catalytic sites to enhance heterogeneous peroxymonosulfate activation system. Chem Eng J 452:139246

    Article  CAS  Google Scholar 

  38. Hu C, Yu B, Zhu Z, Zheng J, Wang W, Liu B (2023) Construction of novel S-scheme LaFeO3/g-C3N4 composite with efficient photocatalytic capacity for dye degradation and Cr(VI) reduction. Colloids Surf A: Physicochem Eng Asp 664:131189

    Article  CAS  Google Scholar 

  39. Yang L, Dall’Agnese C, Dall’Agnese Y, Chen G, Gao Y, Sanehira Y, Jena AK, Wang X, Gogotsi Y, Miyasaka T (2019) Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Adv Funct Mater 29(46):1905694

    Article  CAS  Google Scholar 

  40. Su T, Men C, Chen L, Chu B, Luo X, Ji H, Chen J, Qin Z (2021) Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx /ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution. Adv Sci 9(4):2103715

    Article  Google Scholar 

  41. Yao Z, Sun H, Sui H, Liu X (2020) 2D/2D Heterojunction of R-scheme Ti(3)C(2) MXene/MoS(2) nanosheets for enhanced photocatalytic performance. Nanoscale 15(1):78

    Article  CAS  Google Scholar 

  42. Tie L, Yang S, Yu C, Chen H, Liu Y, Dong S, Sun J, Sun J (2019) In situ decoration of ZnS nanoparticles with Ti(3)C(2) MXene nanosheets for efficient photocatalytic hydrogen evolution. J Colloid Interf Sci 545:63–70

    Article  CAS  Google Scholar 

  43. Sun Y, Sun Y, Meng X, Gao Y, Dall’Agnese Y, Chen G, Dall’Agnese C, Wang X (2019) Eosin Y-sensitized partially oxidized Ti3C2 MXene for photocatalytic hydrogen evolution. CataL Sci Technol 9(2):310–315

    Article  CAS  Google Scholar 

  44. Mashtalir O, Cook KM, Mochalin VN, Crowe M, Barsoum MW, Gogotsi Y (2014) Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A 2(35):14334–14338

    Article  CAS  Google Scholar 

  45. Du C, Zhang Q, Lin Z, Yan B, Xia C, Yang G (2019) Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Appl Catal B 248:193–201

    Article  CAS  Google Scholar 

  46. Li Y, Deng X, Tian J, Liang Z, Cui H (2018) Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl Mater Today 13:217–227

    Article  Google Scholar 

  47. Wang H, Wu Y, Xiao T, Yuan X, Zeng G, Tu W, Wu S, Lee HY, Tan YZ, Chew JW (2018) Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl Catal B 233:213–225

    Article  Google Scholar 

  48. Li J, Wang S, Du Y, Liao W (2018) Enhanced photocatalytic performance of TiO2@C nanosheets derived from two-dimensional Ti3C2Tx. Ceram Int 44(6):7042–7046

    Article  CAS  Google Scholar 

  49. Zuo G, Wang Y, Teo WL, Xie A, Guo Y, Dai Y, Zhou W, Jana D, Xian Q, Dong W, Zhao Y (2020) Ultrathin ZnIn(2)S(4) nanosheets anchored on Ti(3)C(2)T(X) MXene for photocatalytic H(2) evolution. Angew Chem 59(28):11287–11292

    Article  CAS  Google Scholar 

  50. Liu S, Jiang X, Waterhouse GIN, Zhang Z, Yu L (2022) A novel Z-scheme NH2-MIL-125(Ti)/Ti3C2 QDs/ZnIn2S4 photocatalyst with fast interfacial electron transfer properties for visible light-driven antibiotic degradation and hydrogen evolution. Sep Purif Technol 294:121094

    Article  CAS  Google Scholar 

  51. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27(30):1701264

    Article  Google Scholar 

  52. Wang Y, Dou H, Wang J, Ding B, Xu Y, Chang Z, Hao X (2016) Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J Power Sources 327:221–228

    Article  CAS  Google Scholar 

  53. Li S, Shao L, Yang Z, Cheng S, Yang C, Liu Y, Xia X (2022) Research paper Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky catalyst for photocatalytic environmental remediation. Green Energy Environ 7(2):246–256

    Article  CAS  Google Scholar 

  54. Li Y, Yin Z, Ji G, Liang Z, Xue Y, Guo Y, Tian J, Wang X, Cui H (2019) 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl Catal B 246:12–20

    Article  CAS  Google Scholar 

  55. Si S, Shou H, Mao Y, Bao X, Zhai G, Song K, Wang Z, Wang P, Liu Y, Zheng Z, Dai Y, Song L, Huang B, Cheng H (2022) Low-coordination single au atoms on ultrathin znin2s4 nanosheets for selective photocatalytic CO2 reduction towards CH4. Angew Chem Int Edi 61:2209446

    Article  Google Scholar 

  56. Zhang K, Qian S, Kim W, Kim JK, Sheng X, Lee JY, Park JH (2017) Double 2-dimensional H2-evoluting catalyst tipped photocatalyst nanowires: a new avenue for high-efficiency solar to H2 generation. Nano Energy 34:481–490

    Article  CAS  Google Scholar 

  57. Wei L, Chen Y, Lin Y, Wu H, Yuan R, Li Z (2014) MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl Catal B 144:521–527

    Article  CAS  Google Scholar 

  58. Han C, Li Y-H, Li J-Y, Qi M, Tang Z, Xu Y-J (2021) Cooperative syngas production and C-N bond formation in one photoredox cycle. Angew Chem Int Edi 60(14):7962–7970

    Article  CAS  Google Scholar 

  59. Zhang S, Liu X, Liu C, Luo S, Wang L, Cai T, Zeng Y, Yuan J, Dong W, Pei Y, Liu Y (2018) MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 12(1):751–758

    Article  CAS  PubMed  Google Scholar 

  60. Zhuang Z, Li Y, Li Z, Lv F, Lang Z, Zhao K, Zhou L, Moskaleva L, Guo S, Mai L (2018) MoB/g-C(3)N(4) interface materials as a schottky catalyst to boost hydrogen evolution. Angew Chem Int Edi 57(2):496–500

    Article  CAS  Google Scholar 

  61. Cai T, Wang L, Liu Y, Zhang S, Dong W, Chen H, Yi X, Yuan J, Xia X, Liu C, Luo S (2018) Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl Catal B 239:545–554

    Article  CAS  Google Scholar 

  62. Banerjee T, Podjaski F, Kröger J, Biswal BP, Lotsch BV (2020) Polymer photocatalysts for solar-to-chemical energy conversion. Nat Rev Mater 6(2):168–190

    Article  Google Scholar 

  63. Wang H, Yuan X, Wu Y, Zeng G, Dong H, Chen X, Leng L, Wu Z, Peng L (2016) In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl Catal B 186:19–29

    Article  CAS  Google Scholar 

  64. Peng C, Wei P, Li X, Liu Y, Cao Y, Wang H, Yu H, Peng F, Zhang L, Zhang B, Lv K (2018) High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 53:97–107

    Article  CAS  Google Scholar 

  65. Makuła P, Pacia M, Macyk W (2018) How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys Chem Lett 9(23):6814–6817

    Article  PubMed  Google Scholar 

  66. Boppella R, Yang W, Tan J, Kwon H-C, Park J, Moon J (2019) Black phosphorus supported Ni2P co-catalyst on graphitic carbon nitride enabling simultaneous boosting charge separation and surface reaction. Appl Catal B 242:422–430

    Article  CAS  Google Scholar 

  67. Landi S, Segundo IR, Afonso C, Lima O, Costa MFM, Freitas E, Carneiro J (2022) Evaluation of band gap energy of TiO2 precipitated from titanium sulphate. Physica B 639:414008

    Article  CAS  Google Scholar 

  68. Jiang L, Yuan X, Pan Y, Liang J, Zeng G, Wu Z, Wang H (2017) Doping of graphitic carbon nitride for photocatalysis: A review. Appl Catal B 217:388–406

    Article  CAS  Google Scholar 

  69. Toe CY, Zhou S, Gunawan M, Lu X, Ng YH, Amal R (2021) Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis. J Mater Chem A 9(36):20277–20319

    Article  CAS  Google Scholar 

  70. Li C, Liu X, Ding G, Huo P, Yan Y, Yan Y, Liao G (2022) Interior and surface synergistic modifications modulate the SnNb2O6/Ni-doped ZnIn2S4 S-scheme heterojunction for efficient photocatalytic H-2 evolution. Inorg Chem 61(11):4681–4689

    Article  CAS  PubMed  Google Scholar 

  71. Shi B, Yin H, Gong J, Nie Q (2017) Ag/AgCl decorated Bi4Ti3O12 nanosheet with highly exposed (001) facets for enhanced photocatalytic degradation of Rhodamine B, Carbamazepine and Tetracycline. Appl Surf Sci 419:614–623

    Article  CAS  Google Scholar 

  72. Zhao H, Zhang T, Shan D, Zhu Y, Gao G, Liu Y, Liu J, Liu M, You W (2020) ZnIn2S4/In(OH)3 hollow microspheres fabricated by one-step l-cysteine-mediated hydrothermal growth for enhanced hydrogen production and MB degradation. Int J Hydrogen Energy 45(27):13975–13984

    Article  CAS  Google Scholar 

  73. Liang Q, Gao W, Liu C, Xu S, Li Z (2020) A novel 2D/1D core-shell heterostructures coupling MOF-derived iron oxides with ZnIn(2)S(4) for enhanced photocatalytic activity. J Hazard Mater 392:122500

    Article  CAS  PubMed  Google Scholar 

  74. Zou X, Yuan C, Cui Y, Dong Y, Chen D, Ge H, Ke J (2021) Construction of zinc-indium-sulfide/indium oxide step-scheme junction catalyst for enhanced photocatalytic activities of pollutant degradation and hydrogen generation. Sep Purif Technol 266:118545

    Article  CAS  Google Scholar 

  75. Chen J, Chao F, Mu X, Jiang J, Zhu Q, Ren J, Guo Y, Lou Y (2019) ZnIn2S4/UiO-66-(SH)2 composites as efficient visible-light photocatalyst for RhB degradation. Inorg Chem Commun 102:25–29

    Article  CAS  Google Scholar 

  76. Shi W, Lv H, Yuan S, Huang H, Liu Y, Kang Z (2017) Synergetic effect of carbon dots as co-catalyst for enhanced photocatalytic performance of methyl orange on ZnIn2S4 microspheres. Sep Purif Technol 174:282–289

    Article  CAS  Google Scholar 

  77. Di Paola A, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photocatalyst. Catalysts 3(1):36–73

    Article  Google Scholar 

  78. Peng C, Yang X, Li Y, Yu H, Wang H, Peng F (2016) Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl Mater Inter 8(9):6051–6060

    Article  CAS  Google Scholar 

  79. Ran J, Gao G, Li F-T, Ma T-Y, Du A, Qiao S-Z (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8(1):13907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Su T, Peng R, Hood ZD, Naguib M, Ivanov IN, Keum JK, Qin Z, Guo Z, Wu Z (2018) One-step synthesis of Nb(2)O(5)/C/Nb(2)C (MXene) composites and their use as photocatalysts for hydrogen evolution. Chemsuschem 11(4):688–699

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Nature Science Foundation of China (Grant Nos. 51872069, 52102165), Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY21E030008, LQ20E020007), Teacher Professional Development Project for Domestic Visiting Scholars (FX2023015), and the Fundamental Research Funds for the Provincial Universities of Zhejiang.

Author information

Authors and Affiliations

Authors

Contributions

M.M.Y., Investigation, Data curation, Writing-original draft. Y.Q.S., Project administration, Formal Analysis, Writing-review & editing, Funding acquisition. Z.J.L., Resources, Validation. S.Y., Methodology, Investigation. X.L., Resources, Funding acquisition. M.X.X., Visualization, Funding acquisition. J.Z., Resources. Q.Z., Writing-review & editing, Conceptualization, Supervision.

Corresponding authors

Correspondence to Yueqin Shi or Qi Zhang.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 575 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Shi, Y., Li, Z. et al. One-step Synthesis of ZnIn2S4/Ti3C2Tx Hybrids for Efficient Photodegradation of Organic Pollutants. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04663-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04663-5

Keywords

Navigation