Skip to main content
Log in

Enhancing Hydrogen Peroxide Production through Modulating the Morphology of N-doped Mesoporous Carbon Electrocatalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The ever-growing demand for hydrogen peroxide (H2O2) makes large-scale production via environmentally-friendly strategies necessary. The electrochemical oxygen reduction reaction stands out as an efficient and green approach for H2O2 production. Here, nitrogen-doped mesoporous carbon materials (NMCM) with a hollow semispherical morphology are synthesized for H2O2 generation, which exhibit remarkable electrocatalytic stability, selectivity (94.5%), and onset potential (~ 0.6 V) toward the H2O2 formation in neutral environment. The distinct H2O2 production performance of NMCM can be attributed to synergistic effect of two factors, that is, the pyrrolic N to optimize the work function and the hollow semispherical morphology to facilitate mass transfer and expose abundant electrocatalytic active sites. This work offers a facile way to prepare metal-free electrocatalysts for realizing high-performance H2O2 production in neutral solutions.

Graphical Abstract

Nitrogen-doped mesoporous carbon materials with a hollow semispherical morphology and high pyrrolic N contents are synthesized for efficient H2O2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Y, Shi R, Shang L, Peng L, Chu D, Han Z, Waterhouse GIN, Zhang R, Zhang T (2022) Nano Energy 96:107046

    Article  CAS  Google Scholar 

  2. Wu K-H, Wang D, Lu X, Zhang X, Xie Z, Liu Y, Su B-J, Chen J-M, Su D-S, Qi W, Guo S (2020) Chem 6:1443–1458

    Article  CAS  Google Scholar 

  3. Xia C, Xia Y, Zhu P, Fan L, Wang HT (2019) Science 366:226–231

    Article  CAS  PubMed  Google Scholar 

  4. Santacesaria E, Diserio M, Velotti R, Leone U (1994) Ind Eng Chem Res 33:277–284

    Article  CAS  Google Scholar 

  5. Campos-Martin JM, Blanco-Brieva G, Fierro JL (2006) Angew Chem Int Ed Engl 45:6962–6984

    Article  CAS  PubMed  Google Scholar 

  6. Kim HW, Ross MB, Kornienko N, Zhang L, Guo JH, Yang PD, McCloskey BD (2018) Nat Catal 1:282–290

    Article  Google Scholar 

  7. Lunsford JH (2003) J Catal 216:455–460

    Article  CAS  Google Scholar 

  8. Yu S, Cheng X, Wang Y, Xiao B, Xing Y, Ren J, Lu Y, Li H, Zhuang C, Chen G (2022) Nat Commun 13:4737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dong K, Liang J, Wang Y, Xu Z, Liu Q, Luo Y, Li T, Li L, Shi X, Asiri AM, Li Q, Ma D, Sun X (2021) Angew Chem Int Ed Engl 60:10583–10587

    Article  CAS  PubMed  Google Scholar 

  10. Dong K, Lei Y, Zhao H, Liang J, Ding P, Liu Q, Xu Z, Lu S, Li Q, Sun X (2020) J Mater Chem: Mater Energy Sustain 8:23123–23141

    Article  CAS  Google Scholar 

  11. Kim HW, Bukas VJ, Park H, Park S, Diederichsen KM, Lim J, Cho YH, Kim J, Kim W, Han TH, Voss J, Luntz AC, McCloskey BD (2020) ACS Catal 10:852–863

    Article  CAS  Google Scholar 

  12. Sa YJ, Kim JH, Joo SH (2019) Angew Chem Int Ed Engl 58:1100–1105

    Article  CAS  PubMed  Google Scholar 

  13. Xu S, Lu R, Sun K, Tang J, Cen Y, Luo L, Wang Z, Tian S, Sun X (2022) Advanced Science 9:2201421

  14. Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo TF, Nørskov JK, Cui Y (2018) Nat Catal 1:156–162

    Article  CAS  Google Scholar 

  15. Sun Y, Sinev I, Ju W, Bergmann A, Dresp S, Kühl S, Spöri C, Schmies H, Wang H, Bernsmeier D, Paul B, Schmack R, Kraehnert R, Roldan Cuenya B, Strasser P (2018) ACS Catal 8:2844–2856

    Article  CAS  Google Scholar 

  16. Hu Y, Zhang J, Shen T, Li Z, Chen K, Lu Y, Zhang J, Wang D (2021) ACS Appl Mater Interfaces 13:29551–29557

    Article  CAS  Google Scholar 

  17. Wang Y, Zhou Y, Feng Y, Yu X-Y (2022) Adv Funct Mater 32:2110734

    Article  CAS  Google Scholar 

  18. Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IE, Rossmeisl J (2013) Nat Mater 12:1137–1143

    Article  CAS  PubMed  Google Scholar 

  19. Verdaguer-Casadevall A, Deiana D, Karamad M, Siahrostami S, Malacrida P, Hansen TW, Rossmeisl J, Chorkendorff I, Stephens IE (2014) Nano Lett 14:1603–1608

    Article  CAS  PubMed  Google Scholar 

  20. Jirkovsky JS, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin DJ (2011) J Am Chem Soc 133:19432–19441

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Lyu Z, Chen Z, Zhu S, Shi Y, Chen R, Xie M, Yao Y, Chi M, Shao M, Xia Y (2021) Angew Chem Int Ed Engl 60:19643–19647

    Article  CAS  PubMed  Google Scholar 

  22. Chen S, Chen Z, Siahrostami S, Higgins D, Nordlund D, Sokaras D, Kim TR, Liu Y, Yan X, Nilsson E, Sinclair R, Norskov JK, Jaramillo TF, Bao Z (2018) J Am Chem Soc 140:7851–7859

    Article  CAS  PubMed  Google Scholar 

  23. Gao J, Yang Hb, Huang X, Hung S-F, Cai W, Jia C, Miao S, Chen HM, Yang X, Huang Y, Zhang T, Liu B (2020) Chem 6:658–674

  24. Jung E, Shin H, Lee BH, Efremov V, Lee S, Lee HS, Kim J, Hooch Antink W, Park S, Lee KS, Cho SP, Yoo JS, Sung YE, Hyeon T (2020) Nat Mater 19:436–442

    Article  CAS  PubMed  Google Scholar 

  25. Huang X, Song M, Zhang J, Shen T, Luo G, Wang D (2023) Nano-Micro Lett 15:86

    Article  CAS  Google Scholar 

  26. Cai W, Wang Y, Xiao C, Wu H, Yu X (2021) Plasma Sci Technol 23:025502

    Article  CAS  Google Scholar 

  27. Jia N, Yang T, Shi S, Chen X, An Z, Chen Y, Yin S, Chen P (2020) ACS Sustain Chem Eng 8:2883–2891

    Article  CAS  Google Scholar 

  28. Liu Y, Quan X, Fan X, Wang H, Chen S (2015) Angew Chem Int Ed Engl 54:6837–6841

    Article  CAS  PubMed  Google Scholar 

  29. Han L, Sun Y, Li S, Cheng C, Halbig CE, Feicht P, Hübner JL, Strasser P, Eigler S (2019) ACS Catal 9:1283–1288

    Article  CAS  Google Scholar 

  30. Xu Z, Ma Z, Dong K, Liang J, Zhang L, Luo Y, Liu Q, You J, Feng Z, Ma D, Wang Y, Sun X (2022) Chem Commun (Camb) 58:5025–5028

    Article  CAS  PubMed  Google Scholar 

  31. Jiang Y, Ni P, Chen C, Lu Y, Yang P, Kong B, Fisher A, Wang X (2018) Adv Energy Mater 8:1801909

    Article  Google Scholar 

  32. Hasché F, Oezaslan M, Strasser P, Fellinger T-P (2016) J Energy Chem 25:251–257

    Article  Google Scholar 

  33. Huang B, Cui Y, Hu R, Huang J, Guan L (2021) ACS Appl Energy Mater 4:4620–4629

    Article  CAS  Google Scholar 

  34. Pang Y, Wang K, Xie H, Sun Y, Titirici M-M, Chai G-L (2020) ACS Catal 10:7434–7442

    Article  CAS  Google Scholar 

  35. Zhang H, Noonan O, Huang X, Yang Y, Xu C, Zhou L, Yu C (2016) ACS Nano 10:4579–4586

    Article  CAS  PubMed  Google Scholar 

  36. Wu J, Mehmood A, Zhang G, Wu S, Ali G, Kucernak A (2021) ACS Catal 11:5035–5046

    Article  CAS  Google Scholar 

  37. Portet C, Yushin G, Gogotsi Y (2007) Carbon 45:2511–2518

    Article  CAS  Google Scholar 

  38. Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G (2017) J Am Chem Soc 139:14143–14149

    Article  CAS  PubMed  Google Scholar 

  39. Duraisamy V, Krishnan R, Senthil Kumar SM (2020) ACS Appl Nano Mater 3:8875–8887

    Article  CAS  Google Scholar 

  40. Iglesias D, Giuliani A, Melchionna M, Marchesan S, Criado A, Nasi L, Bevilacqua M, Tavagnacco C, Vizza F, Prato M, Fornasiero P (2018) Chem 4:106–123

    Article  CAS  Google Scholar 

  41. Xing R, Zhou T, Zhou Y, Ma R, Liu Q, Luo J, Wang J (2018) Nano-Micro Lett 10:3

    Article  Google Scholar 

  42. Wu G, Mack NH, Gao W, Ma S, Zhong R, Han J, Baldwin JK, Zelenay P (2012) ACS Nano 6:9764–9776

    Article  CAS  PubMed  Google Scholar 

  43. Chen W, Chen Y, Yang H, Li K, Chen X, Chen H (2018) Bioresour Technol 249:247–253

    Article  CAS  PubMed  Google Scholar 

  44. Peng Y, Bian Z, Zhang W, Wang H (2023) Nano Res 16:6642–6651

  45. Zhang Y, Pang Y, Xia D, Chai G (2022) New J Chem 46:14510–14516

    Article  CAS  Google Scholar 

  46. Meng G, Zhan F, She J, Xie J, Zheng Q, Cheng Y, Yin Z (2023) Nanoscale 15:15994–16001

    Article  CAS  PubMed  Google Scholar 

  47. Cai Y, Tao L, Huang G, Zhang N, Zou Y, Wang S (2021) Chin J Catal 42:938–944

    Article  CAS  Google Scholar 

  48. Lu Y, Liang J, Deng S, He Q, Deng S, Hu Y, Wang D (2019) Nano Energy 65:103993

  49. Du J, Zhang Y, Wu H, Hou S, Chen A (2020) Carbon 156:523–528

    Article  CAS  Google Scholar 

  50. Zhou Y, Chen G, Zhang J (2020) J Mater Chem A 8:20849–20869

    Article  CAS  Google Scholar 

  51. Sheng S, Ye K, Gao Y, Zhu K, Yan J, Wang G, Cao D (2021) J Colloid Interface Sci 602:325–333

    Article  CAS  PubMed  Google Scholar 

  52. Franz S, Arab H, Chiarello GL, Bestetti M, Selli E (2020) Adv Energy Mater 10:2000652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704502), the National Natural Science Foundation of China (Grant No. U22A20436), and the Special Program for Guiding Local Science and Technology Development by the Central Government (Grant No. 2022L3090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Chai.

Ethics declarations

Competing Interests

The authors declare that they have no known financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Feng, L., Pang, Y. et al. Enhancing Hydrogen Peroxide Production through Modulating the Morphology of N-doped Mesoporous Carbon Electrocatalysts. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04658-2

Keywords

Navigation