Skip to main content
Log in

Modulating the C and Mo Exposure of Molybdenum Carbide for Efficient Low-Temperature CO2 Reduction to CO

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Molybdenum carbides (MoxC) with multiple crystal structures are a group of promising catalysts for low-temperature CO2 reduction to CO. However, the relationship between the C and Mo exposure and the activity is elusive, since control of the C and Mo exposure under the same crystal structures is a difficult task. Herein, the C and Mo exposure at the surface of α-MoC1−x was successfully modulated by control of the S-doped amount in the precursors. It is found that the C exposure was gradually increased with the S doping amount decreasing, and that sole Mo or C exposure will go against CO2 and H2 activation, since bent adsorbed CO2 and H2 dissociation require the synergy of surface C and Mo. In other words, MoC1−x with moderate exposure ratios of C to Mo is most favorable. As a result, the MoC/SiO2-390 catalyst, whose precursor was obtained by annealing molybdenum sulfide at 390 ℃ in air, has the optimal activity, exhibiting a 1001 μmol gcat−1 h−1 of the CO yield with ~89% selectivity at 150 ℃ under ambient pressure. Additionally, CO2 reduction to CO over α-MoC1−x proceeds mainly through the formate (HCOO*) pathway under current operating condition. The present work supplied further insight into the influence of α-MoC1−x surface structures on CO2 reduction.

Graphical Abstract

The moderate exposure ratios of C to Mo at the surface of α-MoC1x is the most favorable for CO2 reduction to CO, since bent adsorbed CO2 and H2 dissociation require the synergy of surface C and Mo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shen X, Meng Q, Dong M, Xiang J, Li S, Liu H, Han B (2019) Chemsuschem 12:5149

    Article  CAS  PubMed  Google Scholar 

  2. Sheehan SW, Buonsanti R (2021) Chem Catal 1:751

    Article  CAS  Google Scholar 

  3. Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) ACS Catal 5:6696

    Article  CAS  Google Scholar 

  4. Pahija E, Panaritis C, Gusarov S, Shadbahr J, Bensebaa F, Patience G, Boffito DC (2022) ACS Catal 12:6887

    Article  CAS  Google Scholar 

  5. Davoodi S, Al-Shargabi M, Wood DA, Rukavishnikov VS, Minaev KM (2023) J Nat Gas Sci Eng 117:205070

    Article  CAS  Google Scholar 

  6. Wang H, Bootharaju MS, Kim JH, Wang Y, Wang K, Zhao M, Zhang R, Xu J, Hyeon T, Wang X, Song S, Zhang H (2023) J Am Chem Soc 145:2264

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, Diao Y, Gao Z, Smith KJ, Guo X, Ma D, Shi C (2022) ACS Catal 12:15501

    Article  CAS  Google Scholar 

  8. Yin K, Shou H, Ferrari D, Jones CW, Davis RJ (2013) Top Catal 56:1740

    Article  CAS  Google Scholar 

  9. He L, Zhang W, Mo Q, Huang W, Yang L, Gao Q (2020) Angew Chem Int Ed 59:3544

    Article  CAS  Google Scholar 

  10. Diao Y, Zhang X, Liu Y, Chen B, Wu G, Shi C (2022) Appl Catal B Environ 301:120779

    Article  CAS  Google Scholar 

  11. Pang J, Sun J, Zheng M, Li H, Wang Y, Zhang T (2019) Appl Catal B Environ 254:510

    Article  CAS  Google Scholar 

  12. Halasi G, Bansagi T, Varga E, Solymosi F (2015) Catal Lett 145:875

    Article  CAS  Google Scholar 

  13. Bai Y, Zhao J, Feng S, Liang X, Wang C (2019) Chem Commun 55:4651

    Article  CAS  Google Scholar 

  14. Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Angew Chem Int Ed 53:6705

    Article  CAS  Google Scholar 

  15. Zhao J, Bai Y, Liang X, Wang T, Wang C (2021) J CO2 Util 49:101562

  16. Porosoff MD, Baldwin JW, Peng X, Mpourmpakis G, Willauer HD (2017) Chemsuschem 10:2408

    Article  CAS  PubMed  Google Scholar 

  17. Wang T, Luo Q, Li Y-W, Wang J, Beller M, Jiao H (2014) Appl Catal A Gen 478:146

    Article  CAS  Google Scholar 

  18. Pistonesi C, Pronsato ME, Bugyi L, Juan A (2012) Catal Today 181:102

    Article  CAS  Google Scholar 

  19. Zhu J, Uslamin EA, Kosinov N, Hensen EJM (2020) Catal Sci Technol 10:3635

    Article  CAS  Google Scholar 

  20. Posada-Pérez S, Ramírez PJ, Evans J, Viñes F, Liu P, Illas F, Rodriguez JA (2016) J Am Chem Soc 138:8269

    Article  PubMed  Google Scholar 

  21. Hao Z, Li X, Tian Y, Ding T, Yang G, Ma Q, Tsubaki N, Li X (2021) Catalysts 11:230

    Article  CAS  Google Scholar 

  22. Liang P, Gao H, Yao Z, Jia R, Shi Y, Sun Y, Fan Q, Wang H (2017) Catal Sci Technol 7:3312

    Article  CAS  Google Scholar 

  23. Xu W, Ramirez PJ, Stacchiola D, Rodriguez JA (2014) Catal Lett 144:1418

    Article  CAS  Google Scholar 

  24. Sun X, Yu J, Cao S, Zimina A, Sarma BB, Grunwaldt J-D, Xu H, Li S, Liu Y, Sun J (2022) J Am Chem Soc 144:22589

    Article  CAS  PubMed  Google Scholar 

  25. Byeon A, Hatter CB, Park JH, Ahn CW, Gogotsi Y, Lee JW (2017) Electrochim Acta 258:979

    Article  CAS  Google Scholar 

  26. Reddy KP, Dama S, Mhamane NB, Ghosalya MK, Raja T, Satyanarayana CV, Gopinath CS (2019) Dalton Trans 48:12199

    Article  CAS  PubMed  Google Scholar 

  27. Shou H, Li L, Ferrari D, Sholl DS, Davis RJ (2013) J Catal 299:150

    Article  CAS  Google Scholar 

  28. Sun L, Xu J, Liu X, Qiao B, Li L, Ren Y, Wan Q, Lin J, Lin S, Wang X, Guo H, Zhang T (2021) ACS Catal 11:5942

    Article  CAS  Google Scholar 

  29. Liu X, Kunkel C, Ramírez de la Piscina P, Homs N, Viñes F, Illas F (2017) ACS Catal 7:4323

    Article  CAS  Google Scholar 

  30. Wang Y, Zhao J, Li Y, Wang C (2018) Appl Catal B Environ 226:544

    Article  CAS  Google Scholar 

  31. Han JW, Li L, Sholl DS (2011) J Phys Chem C 115:6870

    Article  CAS  Google Scholar 

  32. Bobadilla LF, Santos JL, Ivanova S, Odriozola JA, Urakawa A (2018) ACS Catal 8:7455

    Article  CAS  Google Scholar 

  33. Posada-Pérez S, Viñes F, Ramirez PJ, Vidal AB, Rodriguez JA, Illas F (2014) Phys Chem Chem Phys 16:14912

    Article  PubMed  Google Scholar 

  34. Chang XX, Wang T, Gong JL (2016) Energ Environ Sci 9:2177

    Article  CAS  Google Scholar 

  35. He H, Zapol P, Curtiss LA (2012) Energ Environ Sci 5:6196

    Article  CAS  Google Scholar 

  36. Luo C, Zhao J, Li Y, Zhao W, Zeng Y, Wang C (2018) Appl Surf Sci 447:627

    Article  ADS  CAS  Google Scholar 

  37. Posada-Perez S, Vines F, Valero R, Rodriguez JA, Illas F (2017) Surf Sci 656:24

    Article  ADS  CAS  Google Scholar 

  38. Ma L, Chen P, Zhang G, Wang L, Tang F, Zhao X, Wang J, Huang J, Liu Y-N (2021) ChemCatChem 13:3283

    Article  CAS  Google Scholar 

  39. Wang T, Tian X, Yang Y, Li Y-W, Wang J, Beller M, Jiao H (2016) Surf Sci 651:195

    Article  ADS  CAS  Google Scholar 

  40. Marquart W, Raseale S, Prieto G, Zimina A, Sarma BB, Grunwaldt J-D, Claeys M, Fischer N (2021) ACS Catal 11:1624

    Article  CAS  Google Scholar 

  41. Wang C, Fang S, Xie S, Zheng Y, Hu YH (2020) J Mater Chem A 8:7390

    Article  CAS  Google Scholar 

  42. Xie B, Wong RJ, Tan TH, Higham M, Gibson EK, Decarolis D, Callison J, Aguey-Zinsou K-F, Bowker M, Catlow CRA, Scott J, Amal R (2020) Nat Commun 11:1615

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang H, Zhu L, Li S, Yu S, Niu Y, Zhang B, Chu W, Liu X, Perathoner S, Centi G, Liu Y (2023) Nat Catal 6:1062

    Article  CAS  Google Scholar 

  44. Zhao H, Yu R, Ma S, Xu K, Chen Y, Jiang K, Fang Y, Zhu C, Liu X, Tang Y, Wu L, Wu Y, Jiang Q, He P, Liu Z, Tan L (2022) Nat Catal 5:818

    Article  CAS  Google Scholar 

  45. Chen L, Allec SI, Nguyen M-T, Kovarik L, Hoffman AS, Hong J, Meira D, Shi H, Bare SR, Glezakou V-A, Rousseau R, Szanyi J (2023) J Am Chem Soc 145:10847

    Article  CAS  PubMed  Google Scholar 

  46. Zhao J, Chen H, Tian X, Zang H, Fu Y, Shen J (2013) J Catal 298:161

    Article  CAS  Google Scholar 

  47. Ma W, Sun J, Yao S, Wang Y, Chen G, Fan G, Li Y (2023) Angew Chem Int Ed 62:e202313784

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the National Science Foundation of China (Grant No. 21976116), the Natural Science Foundation of Shaanxi Province (Grant No. 2021JM-381), and the Youth Innovation Team Construction Research Program Project of the Shaanxi Provincial Department of Education (Grant No. 21JP015) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, H., Zhang, X. et al. Modulating the C and Mo Exposure of Molybdenum Carbide for Efficient Low-Temperature CO2 Reduction to CO. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04636-8

Keywords

Navigation