Skip to main content
Log in

Improving the Visible Light Absorption and Photocatalytic Degradation Activity of TiO2 Particles Towards MB by Organic Sensitizer Decoration

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Due to the advantages of non-toxicity, high chemical stability, high activity and low cost, TiO2 is deemed as ideal material for photocatalytic degradation. However, due to its relatively high band-gap energy, anatase TiO2 can only absorb UV light and light with higher energy. In this work, the anatase TiO2 particles were decorated with two organic photosensitizers hemin and eosin Y. The morphology and chemical structure of the composites were verified by SEM, XRD patterns and Raman spectra, the light absorption ability and generation of free radicals were also investigated. The band-gap energy of TiO2, hemin/TiO2 and EY/TiO2 were found to be 2.82 eV, 0.72 eV and 0.95 eV, respectively. Additionally, absorption of more visible light and generation of more superoxide radicals were achieved after decoration of photosensitizers. Consequently, the photocatalytic degradation activity was largely improved, when the TiO2 particles was decorated with 3% of hemin, the degradation rate of methyl blue reached 76.89% and 63.82% in 120 min under UV light and visible light, respectively, which were 1.86 and 1.84 times that of neat TiO2. Comparatively, the ferric ions in hemin may capture the electrons generated by TiO2 and then deliver the electrons to oxygen to generate more superoxide radicals, thus hemin/TiO2 exhibits higher photocatalytic degradation activity than EY/TiO2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang Y, Zhao S, Bi F, Chen J, Li Y, Cui L, Xu J, Zhang X (2022) Oxygen-vacancy-induced O2 activation and electron-hole migration enhance photothermal catalytic toluene oxidation. Cell Reports Phys Sci 3(8):101011

    Article  CAS  Google Scholar 

  2. Zhao S, Hou C, Shao L, An W, Cui W (2022) Adsorption and in-situ photocatalytic synergy degradation of 2,4-dichlorophenol by three-dimensional graphene hydrogel modified with highly dispersed TiO2 nanoparticles. Appl Surf Sci 590:153088

    Article  CAS  Google Scholar 

  3. Yang Y, Zhao S, Bi F, Chen J, Wang Y, Cui L, Xu J, Zhang X (2022) Highly efficient photothermal catalysis of toluene over Co3O4/TiO2 p-n heterojunction: the crucial roles of interface defects and band structure. Appl Catal B 315:121550

    Article  CAS  Google Scholar 

  4. Sonu, Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Thakur V, Nguyen V-H, VanLe Q, Singh P (2021) An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification. J Environ Chem Eng 9(5):105812

    Article  CAS  Google Scholar 

  5. Lu Y, Feng Y, Wang F, Zou X, Chen Z-F, Chen P, Liu H, Su Y, Zhang Q, Liu G (2018) Facile hydrothermal synthesis of carbon dots (CDs) doped ZnFe2O4/TiO2 hybrid materials with high photocatalytic activity. J Photochem Photobiol, A 353:10–18

    Article  CAS  Google Scholar 

  6. Zhang X, Ma S, Gao B, Bi F, Liu Q, Zhao Q, Xu J, Lu G, Yang Y, Wu M (2023) Effect of benzoic acid and dopamine hydrochloride as a modulator in the water resistance of Universitetet i Oslo-67: adsorption performance and mechanism. J Colloid Interface Sci 651:424–435

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Balarabe BY, Maity P (2022) Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids Surf A: Physicochem Eng Asp 655:130247

    Article  CAS  Google Scholar 

  8. Ghanbari F, Moradi M (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J 310:41–62

    Article  CAS  Google Scholar 

  9. Yang Y, Li X, Jie B, Zheng Z, Li J, Zhu C, Wang S, Xu J, Zhang X (2022) Electron structure modulation and bicarbonate surrounding enhance Fenton-like reactions performance of Co-Co PBA. J Hazard Mater 437:129372

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Gong Y, Lin N, Yu L, Du B, Zhang X (2022) Enhanced removal of Cr(VI) from aqueous solution by stabilized nanoscale zero valent iron and copper bimetal intercalated montmorillonite. J Colloid Interface Sci 606:941–952

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Li H, Yu J, Gong Y, Lin N, Yang Q, Zhang X, Wang Y (2023) Perovskite catalysts with different dimensionalities for environmental and energy applications: a review. Sep Purif Technol 307:122716

    Article  CAS  Google Scholar 

  12. Wang Y, Lin N, Xu J, Jiang H, Chen R, Zhang X, Liu N (2023) Construction of microwave/PMS combined dual responsive perovskite-MXene system for antibiotic degradation: synergistic effects of thermal and non-thermal. Appl Surf Sci 639:158263

    Article  CAS  Google Scholar 

  13. Liu J, Wang Y, Dai Z, Jia CQ, Yang L, Liu J, Chen Y, Yao L, Wang B, Huang W, Jiang W (2024) Recent advances in Zeolite-based catalysts for volatile organic compounds decontamination by thermal catalytic oxidation. Sep Purif Technol 330:125339

    Article  CAS  Google Scholar 

  14. Zhang X, Rao R, Gao B, Ma S, Bi F, Li C, Zhu Z, Liu N, Yang Y, Wang Z (2023) Crystal engineering of TiO2 enhanced photothermal catalytic degradation of DEHP on Pt catalysts. Mater Today Chem 34:101755

    Article  CAS  Google Scholar 

  15. Zhou Y, Zhang J, Wu D (2022) Enhanced photocatalytic degradation of ciprofloxacin over Bi2MoO6/g-C3N4/BiFeO3 heterojunction photocatalyst under visible light irradiation. Mater Sci Semicond Process 151:107011

    Article  CAS  Google Scholar 

  16. Kefeni KK, Mamba BB (2020) Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: review. Sustain Mater Technol 23:e00140

    CAS  Google Scholar 

  17. Aihemaiti X, Wang X, Wang Z, Bai Y, Qi K, Ma Y, Tao K, Simayi M, Kuerban N (2021) Effective prevention of charge trapping in red phosphorus with nanosized CdS modification for superior photocatalysis. J Enviro Chem Eng 9(6):106479

    Article  CAS  Google Scholar 

  18. Akshhayya C, Okla MK, Al-ghamdi AA, Abdel-Maksoud MA, AbdElgawad H, Das A, Khan SS (2021) Construction of S-scheme heterojunction CuFe2O4/α-MnO2 with tuned bandgap for enhanced white light harvesting: Insights of photoluminescence, Raman scattering and photocatalysis. Surf Interfaces 27:101523

    Article  CAS  Google Scholar 

  19. Camacho-Escobar L, Palma-Goyes RE, Ortiz-Landeros J, Romero-Ibarra I, Gamba-Vásquez OA, Vazquez-Arenas J (2020) Unraveling the structural and composition properties associated with the enhancement of the photocatalytic activity under visible light of Ag2O/BiFeO3-Ag synthesized by microwave-assisted hydrothermal method. Appl Surf Sci 521:146357

    Article  CAS  Google Scholar 

  20. Yang Y, Jie B, Zhai Y, Zeng Y, Kang J, Cheng G, Zhang X (2024) Performance and mechanism of efficient activation of peroxymonosulfate by Co-Mn-ZIF derived layered double hydroxide for the degradation of enrofloxacin. J Mol Liq 394:123723

    Article  CAS  Google Scholar 

  21. Yang Y, Jie B, Ye J, Gan F, Yu S, Lin H, Zhang X (2023) N-doped catalysts built by iron-based metal–organic framework efficiently activated peroxymonosulfate for the tetracycline degradation. J Mol Liq 392:123505

    Article  CAS  Google Scholar 

  22. Chen J, Gao J, Liu X, Wang P, Yu X, Zhao F, Sun Y, Feng W, Wang Q (2022) Controllable phase transformation and enhanced photocatalytic performance of nano-TiO2 by using oxalic acid. Nanomater 12(17):3019

    Article  CAS  Google Scholar 

  23. Lin N, Gong Y, Wang R, Wang Y, Zhang X (2022) Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: design, applications and mechanisms. J Hazard Mater 424(Pt C):127637

    Article  CAS  PubMed  Google Scholar 

  24. Nakate UT, Patil P, Na S-I, Yu YT, Suh E-K, Hahn Y-B (2021) Fabrication and enhanced carbon monoxide gas sensing performance of p-CuO/n-TiO2 heterojunction device. Colloids Surf A: Physicochem Eng Asp 612:125962

    Article  CAS  Google Scholar 

  25. Wang Y, Bi F, Wang Y, Jia M, Tao X, Jin Y, Zhang X (2021) MOF-derived CeO2 supported Ag catalysts for toluene oxidation: the effect of synthesis method. Mol Catal 515:111922

    Article  CAS  Google Scholar 

  26. Wu Z, Zhao J, Yin Z, Wang X, Li Z, Wang X (2020) Highly sensitive photoelectrochemical detection of glucose based on BiOBr/TiO2 nanotube array p-n heterojunction nanocomposites. Sens Actuators B Chem 312:127978

    Article  CAS  Google Scholar 

  27. Delsouz Khaki MR, Shafeeyan MS, Raman AAA, Daud WMAW (2018) Enhanced UV–Visible photocatalytic activity of Cu-doped ZnO/TiO2 nanoparticles. J Mater Sci: Mater Electron 29(7):5480–5495

    CAS  Google Scholar 

  28. Mohapatra S, Singh J, Satpati B (2020) Facile synthesis, structural, optical and photocatalytic properties of mesoporous Ag2O/TiO2 nanoheterojunctions. J Phys Chem Solids 138:109305

    Article  CAS  Google Scholar 

  29. Satti UQ, Zaidi SJA, Riaz A, M.A.ur Rehman, C.X. Li, M.A. Basit, (2023) Simple two-step development of TiO2/Fe2O3 nanocomposite for oxygen evolution reaction (OER) and photo-bio active applications. Colloids Surf A 671:131662

    Article  CAS  Google Scholar 

  30. Dang J, Guo J, Wang L, Guo F, Shi W, Li Y, Guan W (2022) Construction of Z-scheme Fe3O4/BiOCl/BiOI heterojunction with superior recyclability for improved photocatalytic activity towards tetracycline degradation. J Alloy Compd 893:162251

    Article  CAS  Google Scholar 

  31. Mkhalid IA, Fierro JLG, Mohamed RM, Alshahri AA (2020) Visible light driven photooxidation of imazapyr herbicide over highly efficient mesoporous Ag/Ag2O–TiO2 p-n heterojunction photocatalysts. Ceram Int 46(16):25822–25832

    Article  CAS  Google Scholar 

  32. Chen R, Ding S, Wang B, Ren X (2022) Preparation of ZnFe2O4@TiO2 novel core-shell photocatalyst by ultrasonic method and its photocatalytic degradation activity. Coatings 12(10):1407

    Article  CAS  Google Scholar 

  33. Tong S, Zhou J, Ding L, Zhou C, Liu Y, Li S, Meng J, Zhu S, Chatterjee S, Liang F (2022) Preparation of carbon quantum dots/TiO2 composite and application for enhanced photodegradation of rhodamine B. Colloids Surf A: Physicochem Eng Asp 648:129342

    Article  CAS  Google Scholar 

  34. Zhu B, Jiang G, Lv Y, Liu F, Sun J (2021) Photocatalytic degradation of polyacrylamide by rGO@Fe3O4/Cu2O@ZnO magnetic recyclable composites. Mater Sci Semicond Process 131:105841

    Article  CAS  Google Scholar 

  35. Watanabe M (2017) Dye-sensitized photocatalyst for effective water splitting catalyst. Sci Technol Adv Mater 18(1):705–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xue J, Zhang N, Shen Q, Li Q, Liu X, Jia H, Guan R (2022) In-situ construction of photoanode with Fe2O3/Fe3O4 heterojunction nanotube array to facilitate charge separation for efficient water splitting. J Alloy Compd 918:165787

    Article  CAS  Google Scholar 

  37. Raza A, Shen H, Haidry AA, Cui S (2019) Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: advanced photocatalytic application. Appl Surf Sci 488:887–895

    Article  ADS  CAS  Google Scholar 

  38. Bilgic A (2022) Fabrication of monoBODIPY-functionalized Fe3O4@SiO2@TiO2 nanoparticles for the photocatalytic degradation of rhodamine B under UV irradiation and the detection and removal of Cu(II) ions in aqueous solutions. J Alloy Compd 899:163360

    Article  CAS  Google Scholar 

  39. Chen Z-Y, Lai WW-P, Lin HH-H, Tan JX, Wu KCW, Lin AY-C (2022) Photocatalytic degradation of ketamine using a reusable TiO2/SiO2@Fe3O4 magnetic photocatalyst under simulated solar light. J Environ Chem Eng 10(6):108637

    Article  CAS  Google Scholar 

  40. Chishti AN, Ma Z, Liu Y, Chen M, Gautam J, Guo F, Ni L, Diao G (2021) Synthesis of highly efficient and magnetically separable Fe3O4@C-TiO2-Ag catalyst for the reduction of organic dyes and 4-nitrophenol. Colloids Surf A: Physicochem Eng Asp 631:127694

    Article  CAS  Google Scholar 

  41. Feizpoor S, Habibi-Yangjeh A (2018) Ternary TiO2/Fe3O4/CoWO4 nanocomposites: novel magnetic visible-light-driven photocatalysts with substantially enhanced activity through p-n heterojunction. J Colloid Interface Sci 524:325–336

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Jiang W, Sun F, Zeng Y, Zeng Q, Zhang T, Tian W, Liang B (2018) Preparation and application of separable magnetic Fe3O4-SiO2-APTES-Ag2O composite particles with high visible light photocatalytic performance. J Environ Chem Eng 6(1):945–954

    Article  CAS  Google Scholar 

  43. Madima N, Kefeni KK, Mishra SB, Mishra AK, Kuvarega AT (2022) Fabrication of magnetic recoverable Fe3O4/TiO2 heterostructure for photocatalytic degradation of rhodamine B dye. Inorg Chem Commun 145:109966

    Article  CAS  Google Scholar 

  44. Ren X, Chen R, Ding S, Fu N (2023) Preparation and photocatalytic performance of a magnetically recyclable ZnFe2O4@TiO2@Ag2O p-n/Z-type tandem heterojunction photocatalyst: degradation pathway and mechanism. Colloids Surf A: Physicochem Eng Asp 658:130604

    Article  CAS  Google Scholar 

  45. Xiao M, Li R, Yin J, Yang J, Hu X, Xiao H, Wang W, Yang T (2022) Enhanced photocatalytic oxidation of As(III) by TiO2 modified with Fe3O4 through Ti-O-Fe interface bonds. Colloids Surf A: Physicochem Eng Asp 651:129678

    Article  CAS  Google Scholar 

  46. Zhang D, Cui S, Yang J (2017) Preparation of Ag2O/g-C3N4/Fe3O4 composites and the application in the photocatalytic degradation of Rhodamine B under visible light. J Alloy Compd 708:1141–1149

    Article  CAS  Google Scholar 

  47. Liu G, Wang G, Hu Z, Su Y, Zhao L (2019) Ag2O nanoparticles decorated TiO2 nanofibers as a p-n heterojunction for enhanced photocatalytic decomposition of RhB under visible light irradiation. Appl Surf Sci 465:902–910

    Article  ADS  CAS  Google Scholar 

  48. Raja A, Son N, Kang M (2021) Construction of visible-light driven Bi(2)MoO(6)-rGO-TiO(2) photocatalyst for effective ofloxacin degradation. Environ Res 199:111261

    Article  CAS  PubMed  Google Scholar 

  49. Askari P, Mohebbi S (2018) A porphyrin cobalt(ii) complex linked to a TiO2/BiVO4 nanocomposite: alcohol oxidation using nanohybrid materials as a photocatalyst via a mechanism approach. New J Chem 42(3):1715–1724

    Article  CAS  Google Scholar 

  50. Barros VP, Faria AL, MacLeod TCO, Moraes LAB, Assis MD (2008) Ironporphyrin immobilized onto montmorillonite as a biomimetical model for azo dye oxidation. Int Biodeterior Biodegradation 61(4):337–344

    Article  CAS  Google Scholar 

  51. Duan M-Y, Li J, Mele G, Wang C, Lü X-F, Vasapollo G, Zhang F-X (2010) Photocatalytic Activity of Novel Tin Porphyrin/TiO2 Based Composites. J Phys Chem C 114(17):7857–7862

    Article  CAS  Google Scholar 

  52. Lü X-F, Qian H, Mele G, De Riccardis A, Zhao R, Chen J, Wu H, Hu N-J (2017) Impact of different TiO2 samples and porphyrin substituents on the photocatalytic performance of TiO2 @copper porphyrin composites. Catal Today 281:45–52

    Article  Google Scholar 

  53. Schneider J, Berger T, Diwald O (2018) Reactive porphyrin adsorption on TiO(2) anatase particles: solvent assistance and the effect of water addition. ACS Appl Mater Interfaces 10(19):16836–16842

    Article  CAS  PubMed  Google Scholar 

  54. Zhang W, Wang C, Liu X, Li J (2017) Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J Mater Res 32(14):2773–2780

    Article  ADS  CAS  Google Scholar 

  55. Zhao Y, Dong Y, Lu F, Ju C, Liu L, Zhang J, Zhang B, Feng Y (2017) Coordinative integration of a metal-porphyrinic framework and TiO2 nanoparticles for the formation of composite photocatalysts with enhanced visible-light-driven photocatalytic activities. J Mater Chem A 5(29):15380–15389

    Article  CAS  Google Scholar 

  56. De S, Das S, Girigoswami A (2005) Environmental effects on the aggregation of some xanthene dyes used in lasers. Spectrochim Acta A Mol Biomol Spectrosc 61(8):1821–1833

    Article  ADS  PubMed  Google Scholar 

  57. Liu X, Huang W, Lei Y, Li Y, Xue Y, Wang F, Min S (2018) Effective hydrothermal grafting of Eosin Y onto TiO2 nanoparticles towards stable photocatalysts for efficient visible-light-driven photocatalytic H2 evolution. New J Chem 42(9):6631–6635

    Article  CAS  Google Scholar 

  58. Jilani A, Melaibari AA (2022) MoS(2)-Cu/CuO@graphene heterogeneous photocatalysis for enhanced photocatalytic degradation of MB from water. Polymers (Basel) 14(16):3259

    Article  CAS  PubMed  Google Scholar 

  59. Wu Y, Liu L-M, An X, Wei T (2019) New insights into interfacial photocharge transfer in TiO2/C3N4 heterostructures: effects of facets and defects. New J Chem 43(11):4511–4517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support received from the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (Grant No. sklpme2018-4-22), Science and Technology Program of Longquanyi District, Chengdu (No. 2022-34-7), the National Natural Science Foundation of China (No. 51901195), the Chunhui Project, Ministry of Education, China (Z2016128), Sichuan Science and Technology Program (No. 2023YFG0078), Key Laboratory of Ionic Rare Earth Resources and Environment, Ministry of Natural Resources of the People’s Republic of China (No. 2022IRERE402) and the Open Funding Project of the Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths (No. E03MYB0310).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Zhao Li or Rui Han.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GZ., Zhang, S., Tian, D. et al. Improving the Visible Light Absorption and Photocatalytic Degradation Activity of TiO2 Particles Towards MB by Organic Sensitizer Decoration. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04622-0

Keywords

Navigation