Skip to main content

Advertisement

Log in

N-PEGylated (L)-Prolinamide: A Homogeneous, Solvent-Free, and Recyclable Catalyst for Scalable Enantioselective Aldol Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The unique physicochemical properties of PEG-400 were imparted to (L)-prolinamide to afford a homogeneous, solvent-free, recyclable organocatalyst for scalable enantioselective aldol reaction between acetone and benzaldehyde to afford (R)-4-hydroxy-4-phenylbutan-2-one. The reaction was scaled up to afford 41 g of ketol in 95% yield and an ee of 91% using 30 mol% catalyst, 10 mol% trifluoroacetic acid (TFA), and 135 equivalent moles of acetone with respect to benzaldehyde. The catalyst was recycled 4 times with no obvious loss of activity. The role of PEG is discussed at the molecular level. This type of catalyst may provide new possibilities for the so-far-thwarted attempts at large-scale application of proline organocatalysis to asymmetric aldol reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Scheme 2.
Scheme 3.
Scheme 4.

Similar content being viewed by others

References

  1. Ferré M, Pleixats R, Wong Chi Man M, Cattoën X (2016) Recyclable organocatalysts based on hybrid silicas. Green Chem 18:881–922

    Article  Google Scholar 

  2. Agai T, Tanaka S, Dkawa S (1943) J Pharm Soc Jap 63:269

    Google Scholar 

  3. Karimian K, Mohanazadeh F, Rezai S (1983) Application of polymer-bound thiazolium salts to the synthesis of acyloins and benzoins: effects of solvent and substituents of the thiazolium nucleus. J Heterocyclic Chem 20:1119

    Article  CAS  Google Scholar 

  4. Haghighi AJ, Mokhtari J, Karimian K (2020) N PEGylated thiazolium salt: a green and reusable homogenous organocatalyst for the synthesis of benzoins and acyloins. Catal Lett 151:1646–1652

    Article  Google Scholar 

  5. Gaggero N, Pandini S (2017) Advances in chemoselective intermolecular cross benzoin-type condensation reactions. Org Biomol Chem 15:6867–6887

    Article  CAS  PubMed  Google Scholar 

  6. Stetter H (1976) Catalyzed addition of aldehydes to activated double bonds—a new synthetic approach. Angew Chem Int Ed Engl 15:639–712

    Article  Google Scholar 

  7. Wurz NE, Daniliuc CG, Glorius F (2012) Highly enantioselective intermolecular stetter reaction of simple acrylates: synthesis of α-chiral γ-ketoesters. Chem Eur J 18:16297

    Article  CAS  PubMed  Google Scholar 

  8. Christmann M (2005) New developments in the asymmetric Stetter reaction. Angew Chem Int Ed 44:2632–2634

    Article  CAS  Google Scholar 

  9. List B, Lerner RA, Barbas CF III (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc 122:2395–2396

    Article  CAS  Google Scholar 

  10. Adamu A, Aliyu F, Huyop F, Roswanira A, Wahab RA (2018) Molecular basis and engineering of enzymes stereospecificity. J Mol Biol Methods 1:1–7

    Google Scholar 

  11. Chan CHS, Pan L, Yi LY, Yuan S (2018) Rationalization of stereoselectivity in enzyme reactions. WIREs Comput Mol Sci 9:e1403

    Article  Google Scholar 

  12. Ruipu M, Wang Z, Wamsley MC, Duke CN, Lii PH, Epley SE, Todd LC, Roberts PJ (2020) Application of enzymes in regioselective and stereoselective organic reactions. Catalysts 10:832–856

    Article  Google Scholar 

  13. Chapman J, Ismail AI, Dinu CZ (2018) Industrial applications of enzymes: recent advances. Techn Outlooks, Catal 8:238

    Google Scholar 

  14. Sheldon RA, Bradya D, Bode ML (2020) The hitchhiker’s guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci 11:2587–2605

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hanefeld U, Hollmann F, Paul CE (2022) Biocatalysis making waves in organic chemistry. Chem Soc Rev 51:594–627

    Article  CAS  PubMed  Google Scholar 

  16. Nemat-Gorgani M, Karimian K, Mohanazadeh F (1985) Synthesis, characterization, and properties of hexadecyl silica: a novel hydrophobic matrix for protein immobilization. J Am Chem Soc 107:4757–4759

    Article  Google Scholar 

  17. Nemat-Gorgani M, Karimian K (1982) Non-ionic adsorptive immobilization of proteins to palmityl-substituted sepharose 4b. Eur J Biochem 123:601–610

    Article  CAS  PubMed  Google Scholar 

  18. Guerrieri A, Ciriello R, Bianco G, De Gennaro F, Frascaro S (2020) allosteric enzyme-based biosensors—kinetic behaviors of immobilized l-lysine-α-oxidase from Trichoderma viride: ph influence and allosteric properties. Biosensors 10:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oliveira VG, Cardoso MFC, Forezi LSM (2018) Organocatalysis: a brief overview on its evolution and applications. Catalysts 8:605–634

    Article  Google Scholar 

  20. Branco LC, Phillips AMF, Marques MM, Gago S, Branco PS (2016) Recent advances in sustainable organocatalysis. In: Srour H (ed) Recent advances in organocatalysis. Intech, pp 141–182

    Google Scholar 

  21. Torres RR (2013) Stereoselective organocatalysis bond formation methodologies and activation modes. John Wiley & Sons, Inc., Hoboken, pp 29–588

    Book  Google Scholar 

  22. Vachana BS, Karuppasamya M, Vinotha P, Sridharana V, Menendez JC (2020) Stereoselective organic synthesis in water: organocatalysis by proline and its derivatives. In: Inamuddin RB, Asiri AM (eds) Green sustainable process for chemical and environmental engineering and science. Elsevier, Cambridge, pp 191–228

    Chapter  Google Scholar 

  23. Cobb AJA, Shaw DA, Longbottom DA, Gold JB, Ley SV (2005) Organocatalysis with proline derivatives: improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions. Org Biomol Chem 3:84–96

    Article  CAS  PubMed  Google Scholar 

  24. Mahrwald R (2011) Enantioselective organocatalyzed reactions II. Springer, Dordrecht Heidelberg, p 84

    Book  Google Scholar 

  25. Benaglia M, Puglisi A (2020) Catalyst immobilization methods and applications. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  26. Reddy RJ, Chen K (2016) Other 2-substituted pyrrolidines as asymmetric organocatalysts. In: Clark J (ed) sustainable catalysis without metals or other endangered elements part 1. The Royal Society of Chemistry, Cambridge, pp 200–235

    Google Scholar 

  27. Sagamanova IK, Sayalero S, Martínez-Arranz S, Albéniz AC, Pericàs MA (2015) Asymmetric organocatalysts supported on vinyl addition polynorbornenes for work in aqueous media. Catal Sci Technol 3:754–764

    Article  Google Scholar 

  28. Pedrosa R, Andre JM (2016) Prolinamides as asymmetric organocatalysts. In: Clark J (ed) Sustainable catalysis without metals or other endangered elements Part 1. Royal Society of Chemistry, Cambridge, pp 120–133

    Google Scholar 

  29. Enders D, Httl MRM, Runsink J, Raabe G, Wendt B (2007) Organocatalytic one-pot asymmetric synthesis of functionalized tricyclic carbon frameworks from a triple-cascade/diels–alder sequence. Angew Chem Int Ed 46:467–469

    Article  CAS  Google Scholar 

  30. Grondal C, Jeant M, Enders D (2010) Organocatalytic cascade reactions as a new tool in total synthesis. Nat Chem 2:167–178

    Article  CAS  PubMed  Google Scholar 

  31. Gryko D, Chromiński M, Pielacińska DJ (2011) Prolinethioamides versus prolinamides in organocatalyzed aldol reactions—a comparative study. Symmetry 3:265–282

    Article  ADS  CAS  Google Scholar 

  32. Arslan N, Ercan S, Pirinççioğlu N (2020) Proline-based organocatalyst-mediated asymmetric aldol reaction of acetone with substituted aromatic aldehydes: an experimental and theoretical study. Turk J Chem 4:335–351

    Article  Google Scholar 

  33. Naresh T, Kumar TP, Haribabu K, Chandrasekhar S (2014) AZT-prolinamide: the nucleoside derived pyrrolidine catalysts or asymmetric aldol reactions using water as solvent. Tetrahedron Asymmetry 25:1340–1345

    Article  CAS  Google Scholar 

  34. Huang SH, Wang H-J, Shi J (2010) Theoretical study on acidities of (S)-prolinamide derivatives in DMSO and its implications for organocatalysis. J Phys Chem A 114:1068–1081

    Article  CAS  PubMed  Google Scholar 

  35. Henriksen NE, Hansen FY (2019) Theories of molecular reaction dynamics the microscopic foundation of chemical kinetics, 2nd edn. Oxford University Press, New York

    Google Scholar 

  36. Maya V, Raj M, Singh VK (2007) Highly enantioselective organocatalytic direct aldol reaction in an aqueous medium. Org Lett 9:2593–2595

    Article  CAS  PubMed  Google Scholar 

  37. Clemente FR, Houk KN (2004) Computational evidence for the enamine mechanism of intramolecular aldol reactions catalyzed by proline. Angew Chem 116:5889–5892

    Article  ADS  Google Scholar 

  38. Bahmanyar S, Houk KN, Martin HJ, List B (2003) Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular aldol reactions. J Am Chem Soc 125:2475–2479

    Article  CAS  PubMed  Google Scholar 

  39. Angelici G, Corrêa RJ, Garden SJ, Tomasini C (2009) Water influences the enantioselectivity in the proline or prolinamide-catalyzed aldol addition of acetone to isatins. Tetrahedron Lett 50:814–817

    Article  CAS  Google Scholar 

  40. Aratake S, Itoh T, Okano T, Nagae N, Sumija T, Shoji M, Hayashi Y (2007) Highly diastereo- and enantioselective direct aldol reactions of aldehydes and ketones catalyzed by siloxyproline in the presence of water. Chem Eur J 13:10246–10256

    Article  CAS  PubMed  Google Scholar 

  41. Michelet B, Martin-Mingot A, Rodriguez J, Thibaudeau S, Bonne D (2023) Enantioselective organocatalysis and superacid activation: challenges and opportunities. Chem Eur J 29:e202300440

    Article  CAS  PubMed  Google Scholar 

  42. Hajipour AR, Khorsandi Z (2017) Application of immobilized proline on CNTs and proline ionic liquid as novel organocatalysts in the synthesis of 2-amino-4H-pyran derivatives: a comparative study between their catalytic activities. Chem Select 2:8976–8982

    CAS  Google Scholar 

  43. Bartók M (2015) Advances in immobilized organocatalysts for the heterogeneous asymmetric direct aldol reactions. Catal Rev: Sci Eng 57:192–255

    Article  Google Scholar 

  44. Aukland MH, List B (2021) Organocatalysis emerging as a technology. Pure Appl Chem 93:2–11

    Article  Google Scholar 

  45. Chandrasekhar S, Narsihmulu C, Sultana SS, Reddy NR (2002) Poly(ethylene glycol (PEG) as a reusable solvent medium for organic synthesis application in the heck reaction. Org Lett 4:4399–4401

    Article  CAS  PubMed  Google Scholar 

  46. Kubela, R.: US Patent 5, 908, 959, Process for the production of amino-1-hydroxy butylidene-1,1-bisphosphonic acid or salts thereof

  47. Harris JM (1992) Poly (ethylene glycol), chemistry biotechnical and biomedical applications. Springer, New York, p 15

    Book  Google Scholar 

  48. Herman S, Hooftman G, Schacht E (1995) Poly(ethylene glycol) with reactive end groups in modification of proteins. J Bioact Compat Polym 10:145–178

    Article  CAS  Google Scholar 

  49. Soni J, Sahiba N, Sethiya A, Agarwal S (2020) Polyethylene glycol: a promising approach for sustainable organic synthesis. J Mol Liq 315:113766–113796

    Article  CAS  Google Scholar 

  50. Israelachvili J (1997) The different faces of poly(ethylene glycol). Proc Natl Acad Sci USA 94:8378–8379

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mokhtari J, Azarnoosh S, Karimian K (2017) Resolution of racemic mixtures by phase transition of pegylated resolving agents. ACS Omega 2:8717–8722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mokhtari J, Nourisefat M, Zamiri B, Fotouhi L, Zarnani A-H, Moosavi-Movahedi AA, Karimian K (2021) Novel method for the isolation of proteins and small target molecules from biological and aqueous media by salt-assisted phase transformation of their pegylated recognition counterparts. ACS Omega 6:7585–7597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mase N, Nakai Y, Ohara N, Yoda H, Takabe K, Tanaka F, Barbas CFIII (2006) Organocatalytic direct asymmetric aldol reactions in water. J Am Chem Soc 128:734–735

    Article  CAS  PubMed  Google Scholar 

  54. Hayashi Y, Aratake S, Okano T, Takahashi J, Sumiya T, Shoji M (2006) Combined proline–surfactant organocatalyst for the highly diastereo- and enantioselective aqueous direct cross-aldol reaction of aldehydes. Angew Chem Int Ed 45:5527–5529

    Article  CAS  Google Scholar 

  55. Romney DK, Arnold FH, Lipshutz BH (2018) Chemistry takes a bath: reactions in aqueous media. J Org Chem 83:7319–7322

    Article  CAS  PubMed  Google Scholar 

  56. Hayashi Y, Sumiya T, Takahashi J, Gotoh H, Urushima T, Shoji T (2006) Highly diastereo- and enantioselective direct aldol reactions in water. Angew Chem Int Ed 45:958–996

    Article  CAS  Google Scholar 

  57. Scheilman JA (1997) Temperature, stability, and the hydrophobic interaction. Biophys J 73:2960–2964

    Article  Google Scholar 

  58. Puglisi A, Rossi S (2021) Stereoselective organocatalysis and flow chemistry. Phys Sci Rev. https://doi.org/10.1515/psr-2018-0099

    Article  Google Scholar 

  59. Bruckmann A, Krebs A, Bolm C (2008) Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chem 10:1131–1141

    Article  CAS  Google Scholar 

  60. Hagen J (2015) Industrial catalysis, 3rd edn. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 501–530

    Book  Google Scholar 

  61. Leadbeater NE (2014) Microwave heating as a tool for organic chemistry in comprehensive organic synthesis. Enabl Technol Org Synth 9:234–286

    CAS  Google Scholar 

  62. Russo A, Leadbeater NE, Lattanzi A (2010) Convenient methodology for nitro-Michael addition of carbonyl compounds catalyzed by l-Proline using microwave heating. Lett Org Chem 7:98–102

    Article  CAS  Google Scholar 

  63. Oakenful D, Fenwick DE (1977) Thermodynamics and mechanism of hydrophobic interaction. Aust J Chem 30:741–752

    Article  Google Scholar 

  64. Sun Q, Fu Y, Wang W (2022) Temperature effects on hydrophobic interactions: implications for protein unfolding. Chem Phys 559:111550

    Article  CAS  Google Scholar 

  65. Kondel P, Horak J, Tesarova J (1967) Variation of local void fraction in random and packed beds of equilateral cylinders. Ind Eng Chem Process Des Dev 7:250–252

    Article  Google Scholar 

  66. Carberry JJ (1987) Physico-chemical aspects of mass and heat transfer in heterogeneous catalysis. In: Anderson JR et al (eds) Catalysis. Springer Verlag, Berlin, pp 131–171

    Chapter  Google Scholar 

  67. Joshi SS, Ranade VV (2016) Industrial catalytic processes for fine and specialty chemicals. Elsevier Publications, Cambridge

    Google Scholar 

  68. Hosseini M, Stiasni N, Barbieri V, Kappe CO (2007) Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling. J Org Chem 72:1417–1424

    Article  CAS  PubMed  Google Scholar 

  69. Odedra A, Seeberger PH (2009) 5-(Pyrrolidin-2-yl)tetrazole-catalyzed aldol and Mannich reactions: acceleration and lower catalyst loading in a continuous-flow reactor. Angew Chem Int Ed 48:2699–2702

    Article  CAS  Google Scholar 

  70. Szcześniak P, Staszewska-Krajewska O, Furman B, Mlynarski J (2017) Solid supported Hayashi-Jørgensen catalyst as an efficient and recyclable organocatalyst for asymmetric Michael addition reactions. Tetrahedron Asymmetry 28:1765–1773

    Article  Google Scholar 

  71. Zcześniak P, Buda S, Lefevre L, Staszewska-Krajewska O, Mlynarski J (2019) Total asymmetric synthesis of (+)-paroxetine and (+)-femoxetine. Eur J Org Chem 2019:6973–6982

    Article  Google Scholar 

  72. Oliveira PH, Santos BM, Leão RA, Miranda LS, San Gil RA, Souza RO, Finelliet FG (2019) From immobilization to catalyst use: a complete continuous-flow approach towards the use of immobilized organocatalysts. Chem Cat Chem 11:5553–5561

    Google Scholar 

  73. Zhou Y, Shan Z (2006) Chiral Diols: a new class of additives for direct aldol reaction catalyzed by l-proline. J Org Chem 71:9510–9512

    Article  CAS  PubMed  Google Scholar 

  74. Sun LHW, Yang D, Li G, Wang R (2016) Additive effects on asymmetric catalysis. Chem Rev 116:4006–4123

    Article  PubMed  Google Scholar 

  75. Pihko PM, Laurikainen KM, Usano A, Nyberg AI, Kaavi JA (2006) Effect of additives on the proline-catalyzed ketone-aldehyde aldol reactions. Tetrahedron 62:317–328

    Article  CAS  Google Scholar 

  76. Notz W, Tanaka F, Barbas CF (2004) Development of direct catalytic asymmetric aldol, Mannich, Michael, and Diels-Alder reactions. Acc Chem Res 37:580–591

    Article  CAS  PubMed  Google Scholar 

  77. Zotova N, Franzke A, Armstrong A, Blackmond DG (2007) Clarification of the role of water in proline-mediated aldol reactions. J Am Chem Soc 129:15100–15101

    Article  CAS  PubMed  Google Scholar 

  78. Tam JWO, Klotz IM (1973) Protonation of amides by triflouoroacetic acid: infrared and nuclear magnetic resonance studies. Spectrochim Acta 29A:633–644

    Article  ADS  Google Scholar 

  79. Zotova N, Broadbelt LJ, Armstrong A, Blackmond DG (2009) Kinetic and mechanistic studies of proline-mediated direct intermolecular aldol reactions. Bioorg Med Chem Lett 19:3934–3937

    Article  CAS  PubMed  Google Scholar 

  80. Sunoj RB (2016) Transition state models for understanding the origin of chiral induction in asymmetric catalysis. Acc Chem Res 49:1019–1028

    Article  CAS  PubMed  Google Scholar 

  81. Song CE, Park SJ, Hwang I-S, Jung MJ, Shim SY, Bae HY, Jung JY (2019) Hydrophobic chirality amplification in confined water cages. Nat Comm 10:851

    Article  ADS  Google Scholar 

  82. Varghese JJ, Mushrif SH (2019) Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review. React Chem Eng 4:165–206

    Article  CAS  Google Scholar 

  83. Fang Y-R, MacMillar S, Eriksson J, Kołodziejska-Huben M, Dybała-Defratyka A, Paneth P, Matsson O, Westaway KC (2006) The effect of solvent on the structure of the transition state for the SN2 reaction between cyanide ion and ethyl chloride in DMSO and THF probed with six different kinetic isotope effects. J Org Chem 71:4742–4747

    Article  CAS  PubMed  Google Scholar 

  84. Morris W, Lorance ED, Gould IR (2019) Understanding the solvent contribution to chemical reaction barriers. J Phys Chem A 123:10490–10499

    Article  CAS  PubMed  Google Scholar 

  85. Bahmanyar S, Houk KN (2001) Transition states of amine-catalyzed aldol reactions involving enamine intermediates: theoretical studies of mechanism, reactivity, and stereoselectivity. J Am Chem Soc 123:11273–11283

    Article  CAS  PubMed  Google Scholar 

  86. Karnik A, Hasan M (2021) Stereochemistry: a three-dimensional insight. Elsevier, Amsterdam

    Google Scholar 

  87. https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/sterslct.htm

  88. Sunoj RB (2011) Proline-derived organocatalysis and synergism between theory and experiments. Comput Mol Sci 1:920–931

    Article  CAS  Google Scholar 

  89. Perrin CL, Chang K-L (2016) The complete mechanism of an aldol condensation. J Org Chem 81:631–635

    Article  Google Scholar 

  90. Marche C, Ferronato C, Jose J (2003) Solubilities of n-alkanes (C6 to C8) in Water from 30 to 180 °C. J Chem Eng Data 48:967–997

    Article  CAS  Google Scholar 

  91. Bogunia M, Makowski M (2020) Influence of ionic strength on hydrophobic interactions in water: dependence on solute size and shape. J Phys Chem B 124:10326–10336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jiang M, Zhu S-F, Yang Y, Gong L-Z, Zhou X-G, Zhou Q-L (2006) Asymmetric aldol reactions catalyzed by new spiro diamine derivatives. Tetrahedron Asymmetry 17:384–387

    Article  CAS  Google Scholar 

  93. Hayashi Y, Aratake S, Itoh T, Okano T, Sumiya T, Shoji M (2007) Dry and wet prolines for asymmetric organic solvent-free aldehyde and aldehyde–ketone aldol reactions. Chem Commun. https://doi.org/10.1039/B613262F

    Article  Google Scholar 

  94. Sekiguchi Y, Sasaoka A, Shimomoto A, Fujioka S, Kotsuki H (2003) High-pressure-promoted asymmetric aldol reactions of ketones with aldehydes catalyzed by l-proline. Synlett. https://doi.org/10.1055/s-2003-41424

    Article  Google Scholar 

  95. Shajahan R, Sarang R, Saithalavi A (2022) Polymer supported proline-based organocatalysts in asymmetric aldol reactions: a review. Curr Organocatal 9:124–146

    Article  CAS  Google Scholar 

  96. Guillena G, Alonso D, Baeza A, Chinchilla R, Flores-Ferrándiz J, Gómez-Martínez M, Trillo P (2015) Pursuing chemical efficiency by using supported organocatalysts for asymmetric reactions under aqueous conditions. Curr Organocatal 2:102–123

    Article  CAS  Google Scholar 

  97. Nweke, M.C.: Chromatography resin characterization to analyze lifetime and performance during biopharmaceutical manufacture. A thesis submitted for the degree of Doctor of Philosophy, Department of Biochemical Engineering University College London (2017)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study. The concept was developed by KK and the work was supervised by JM and carried out by FH-D, HZ and AY.

Corresponding authors

Correspondence to Javad Mokhtari or Khashayar Karimian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 353 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Dastjerdi, F., Zandieh, H., Yari, A. et al. N-PEGylated (L)-Prolinamide: A Homogeneous, Solvent-Free, and Recyclable Catalyst for Scalable Enantioselective Aldol Reaction. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04620-2

Keywords

Navigation