Skip to main content
Log in

Strontium Promoted PtSn/Al2O3 Catalysts for Propane Dehydrogenation to Propylene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

PtSn/Al2O3 and PtSnSr/Al2O3 were prepared by the incipient wetness impregnation method. The added Sn and Sr are uniformly distributed on the surface without damaging the original crystal structure and surface texture properties. The addition of Sn not only changes the dispersion of Pt, reduces the reduction temperature of Pt, but also provides electrons to Pt, increases the electron cloud density on the surface of Pt, and reduces the deep propylene adsorption. The addition of Sr reduces the number of total acid sites and strong acid sites, reduces the generation of adverse effects and carbon deposition, slows down the deactivation of the catalyst, and improves the selectivity of propylene. Pt1.5Sn1.5Sr/Al2O3 showed the best catalytic reaction performance and remained stable after five cycles of regeneration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu S, Zhang BF, Liu GZ (2021) Metal-based catalysts for the non-oxidative dehydrogenation of light alkanes to light olefins. React Chem Eng 6:9–26. https://doi.org/10.1039/D0RE00381F

    Article  CAS  Google Scholar 

  2. Muhlenkamp JA, Cho Y, Hicks JC (2023) Modulating Propane dehydrogenation performance and stability of Ni2P with Co doping. Catal Lett 262:1 10. https://doi.org/10.1007/s10562-023-04357-4

    Article  CAS  Google Scholar 

  3. Crivelaro VM, Cortez GG (2023) Propane oxidative dehydrogenation over Sr-doped V catalyst supported on Nb2O5-Al2O3. Catal Lett 153:3651–3664. https://doi.org/10.1007/s10562-022-04262-2

    Article  CAS  Google Scholar 

  4. Fu HY, Qian WX, Zhang HT, Ma HF, Ying WY (2023) Different alkali metals promoted Cr/Al2O3 catalysts for propane dehydrogenation. Fuel 342:127774. https://doi.org/10.1016/j.fuel.2023.127774

    Article  CAS  Google Scholar 

  5. Tedeeva MA, Kustov AL, Pribytkov PV, Kapustin GI, Leonov AV, Tkachenko OP, Tursunov OB, Evdokimenko ND, Kustov LM (2022) Dehydrogenation of propane in the presence of CO2 on GaOx/SiO2 catalyst: influence of the texture characteristics of the support. Fuel 313:122698. https://doi.org/10.1016/j.fuel.2021.122698

    Article  CAS  Google Scholar 

  6. Sun ML, Hu ZP, Wang HY, Suo YJ, Yuan ZY (2023) Design strategies of stable catalysts for propane dehydrogenation to propylene. ACS Catal 13:4719–4741. https://doi.org/10.1021/acscatal.3c00103

    Article  CAS  Google Scholar 

  7. Shi XX, Chen S, Li S, Yang YQ, Guan QQ, Ding JN, Liu XY, Liu Q, Xu WL, Lu JL (2023) Particle size effect of SiO2-supported ZnO catalysts in propane dehydrogenation. Catal Sci Technol 13:1866–1873. https://doi.org/10.1039/D2CY02131E

    Article  CAS  Google Scholar 

  8. Hu ZP, Yang DD, Wang Z, Yuan ZY (2019) State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chin J Catal 40:1233–1254. https://doi.org/10.1016/S1872-2067(19)63360-7

    Article  CAS  Google Scholar 

  9. Chen S, Chang X, Sun GD, Zhang TT, Xu YY, Wang Y, Pei CL, Gong JL (2021) Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem Soc Rev 50:3315–3354. https://doi.org/10.1039/D0CS00814A

    Article  CAS  PubMed  Google Scholar 

  10. Nawaz Z (2015) Light alkane dehydrogenation to light olefin technologies: a comprehensive review. Rev Chem Eng 31:413–436. https://doi.org/10.1515/revce-2015-0012

    Article  CAS  Google Scholar 

  11. Zuo C, Su Q (2023) Research progress on propylene preparation by propane dehydrogenation. Molecules 28:3594. https://doi.org/10.3390/molecules28083594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rodaum C, Chaipornchalerm P, Nunthakitgoson W, Thivasasith A, Maihom T, Atithep T, Kidkhunthod P, Uthayopas C, Nutanong S, Thongratkaew S, Faungnawakij K, Wattanakit C (2022) Highly efficient propane dehydrogenation promoted by reverse water–gas shift reaction on Pt–Zn alloy surfaces. Fuel 325:124833. https://doi.org/10.1016/j.fuel.2022.124833

    Article  CAS  Google Scholar 

  13. Li YM, Zhang QY, Fu ST, Kondratenko VA, Otroshchenko T, Bartling S, Zhang YY, Zanina A, Wang YJ, Cui GQ, Zhou MX, Zhao Z, Xu CM, Jiang GY, Kondratenko EV (2023) Active species and fundamentals of their creation in co-containing catalysts for efficient propane dehydrogenation to propylene. Chem Eng J 460:141778. https://doi.org/10.1016/j.cej.2023.141778

    Article  CAS  Google Scholar 

  14. Choung S, Kim Y, Moon J, Roh J, Hwang J, Han JW (2023) Unveiling the catalyst deactivation mechanism in the non-oxidative dehydrogenation of light alkanes on Rh(111): Density functional theory and kinetic Monte Carlo study. Catal Today 411–412:113819. https://doi.org/10.1016/j.cattod.2022.06.034

    Article  CAS  Google Scholar 

  15. Wang HZ, Zhang W, Jiang JW, Sui ZJ, Zhu YA, Ye GH, Chen D, Zhou XG, Yuan WK (2019) The role of H2S addition on Pt/Al2O3 catalyzed propane dehydrogenation: a mechanistic study. Catal Sci Technol 9:867–876. https://doi.org/10.1039/C8CY02393J

    Article  CAS  Google Scholar 

  16. Luo QX, Zhang XK, Hou BL, Chen JG, Zhu C, Liu ZW, Liu ZT, Lu J (2018) Catalytic function of VOx/Al2O3 for oxidative dehydrogenation of propane: support microstructure-dependent mass transfer and diffusion. Catal Sci Technol 8:4864–4876. https://doi.org/10.1039/C8CY00564H

    Article  CAS  Google Scholar 

  17. Rimaz S, Chen LW, Kawi S, Borgna A (2019) Promoting effect of Ge on Pt-based catalysts for dehydrogenation of propane to propylene. Appl Catal A 588:117266. https://doi.org/10.1016/j.apcata.2019.117266

    Article  CAS  Google Scholar 

  18. Wu J, Peng ZM, Bell AT (2014) Effects of composition and metal particle size on ethane dehydrogenation over PtxSn100−x/Mg(Al)O (70⩽x⩽100). J Catal 311:161–168. https://doi.org/10.1016/j.jcat.2013.11.017

    Article  CAS  Google Scholar 

  19. Nagaraja BM, Shin CH, Jung KD (2013) Selective and stable bimetallic PtSn/θ-Al2O3 catalyst for dehydrogenation of n-butane to n-butenes. Appl Catal A 467:211–223. https://doi.org/10.1016/j.apcata.2013.07.022

    Article  CAS  Google Scholar 

  20. Wang YS, Hu ZP, Tian WW, Gao LJ, Wang Z, Yuan ZY (2019) Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability. Catal Sci Technol 9:6993–7002. https://doi.org/10.1039/C9CY01907C

    Article  CAS  Google Scholar 

  21. Rimaz S, Chen LW, Monzón A, Kawi S, Borgna A (2021) Enhanced selectivity and stability of Pt–Ge/Al2O3 catalysts by Ca promotion in propane dehydrogenation. Chem Eng J 405:1266560. https://doi.org/10.1016/j.cej.2020.126656

    Article  CAS  Google Scholar 

  22. Sricharoen C, Jongsomjit B, Panpranot J, Praserthdam P (2021) The key to catalytic stability on sol–gel derived SnOx/SiO2 catalyst and the comparative study of side reaction with K-PtSn/Al2O3 toward propane dehydrogenation. Catal Today 375:343–351. https://doi.org/10.1016/j.cattod.2020.05.053

    Article  CAS  Google Scholar 

  23. Jang EJ, Lee J, Jeong HY, Kwak JH (2019) Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts. Appl Catal A 572:1–8. https://doi.org/10.1016/j.apcata.2018.12.024

    Article  CAS  Google Scholar 

  24. Xu ZK, Xu R, Yue YY, Yuan P, Bao XJ, Abou-Hamad E, Basset JM, Zhu HB (2019) Bimetallic Pt–Sn nanocluster from the hydrogenolysis of a well-defined surface compound consisting of [(AlO)Pt(COD)Me] and [(AlO)SnPh3] fragments for propane dehydrogenation. J Catal 374:391–400. https://doi.org/10.1016/j.jcat.2019.04.035

    Article  CAS  Google Scholar 

  25. Zhu XY, Wang TH, Xu ZK, Yue YY, Lin MG, Zhu HB (2022) Pt–Sn clusters anchored at Al3+penta sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation. J Energy Chem 65:293–301. https://doi.org/10.1016/j.jechem.2021.06.002

    Article  CAS  Google Scholar 

  26. Jiang P, Fu HY, Ma HF, Qian WX, Zhang HT, Ying WY (2020) Dehydrogenation of propane over sugar foams templated Ga2O3 nanoparticles catalysts. Catal Lett 151:1894–1901. https://doi.org/10.1007/s10562-020-03452-0

    Article  CAS  Google Scholar 

  27. Shi Y, Li XR, Rong X, Gu B, Wei HZ, Zhao Y, Wang W, Sun CL (2020) Effect of aging temperature of support on catalytic performance of PtSnK/Al2O3 propane dehydrogenation catalyst. Catal Lett 150:2283–2293. https://doi.org/10.1007/s10562-020-03115-0

    Article  CAS  Google Scholar 

  28. Yu QQ, Yu T, Chen HY, Fang GZ, Pan XL, Bao XH (2020) The effect of Al3+ coordination structure on the propane dehydrogenation activity of Pt/Ga/Al2O3 catalysts. J Energy Chem 41:93–99. https://doi.org/10.1016/j.jechem.2019.04.027

    Article  Google Scholar 

  29. Wang GJ, Lu K, Yin CQ, Meng FF, Zhang QQ, Yan XL, Bing LC, Wang F, Han DZ (2020) One-step fabrication of PtSn/γ-Al2O3 catalysts with La post-modification for propane dehydrogenation. Catalysts 10:1042. https://doi.org/10.3390/catal10091042

    Article  CAS  Google Scholar 

  30. Qiu Y, Li XY, Zhang YY, Xie C, Zhou S, Wang R, Luo SZ, Jing FL, Chu W (2019) Various metals (Ce, In, La, and Fe) promoted Pt/Sn-SBA-15 as highly stable catalysts for propane dehydrogenation. Ind Eng Chem Res 58:10804–10818. https://doi.org/10.1021/acs.iecr.9b01413

    Article  CAS  Google Scholar 

  31. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653. https://doi.org/10.1021/cr5002436

    Article  CAS  PubMed  Google Scholar 

  32. Zhang YW, Zhou YM, Shi JJ, Zhou SJ, Sheng XL, Zhang ZW, Xiang SM (2014) Comparative study of bimetallic Pt–Sn catalysts supported on different supports for propane dehydrogenation. J Mol Catal A: Chem 381:138–147. https://doi.org/10.1016/j.molcata.2013.10.007

    Article  CAS  Google Scholar 

  33. Lee MH, Nagaraja BM, Lee KY, Jung KD (2014) Dehydrogenation of alkane to light olefin over PtSn/θ-Al2O3 catalyst: effects of Sn loading. Catal Today 232:53–62. https://doi.org/10.1016/j.cattod.2013.10.011

    Article  CAS  Google Scholar 

  34. Deng LD, Wang JW, Wu ZK, Liu CH, Qing L, Liu XW, Xu J, Zhou ZJ, Xu MH (2022) Effects of second metals (M = Fe, Cu, Ga, In, Sn) on the geometric and electronic properties of platinum for the direct dehydrogenation of propane. J Alloys Compd 909:164820. https://doi.org/10.1016/j.jallcom.2022.164820

    Article  CAS  Google Scholar 

  35. Gómez-Quero S, Tsoufis T, Rudolf P, Makkee M, Kapteijn F, Rothenberg G (2013) Kinetics of propane dehydrogenation over Pt–Sn/Al2O3. Catal Sci Technol 3:962–971. https://doi.org/10.1039/C2CY20488F

    Article  Google Scholar 

  36. Deng L, Han SB, Li Y, Shen WJ (2022) Subnanometric Pt–Sn monolayers over a rod-shaped Al2O3 for propane dehydrogenation. ChemCatChem 14:e202200400. https://doi.org/10.1002/cctc.202200400

    Article  CAS  Google Scholar 

  37. Rimaz S, Sabbaghan M, Kosari M, Zarinejad M, Amini M (2022) Anti-sintering MgAl2O4 supported Pt–Ge nanoparticles for propane dehydrogenation: catalytic insights and machine-learning aided performance analysis. Mol Catal 531:112695. https://doi.org/10.1016/j.mcat.2022.112695

    Article  CAS  Google Scholar 

  38. Xu JS, Shi CX, Zhang SG, Zheng QC, Pan L, Zhang XW, Zou JJ (2022) Framework Zr stabilized PtSn/Zr-MCM-41 as a promising catalyst for non-oxidative ethane dehydrogenation. Chin J Chem 40:918–924. https://doi.org/10.1002/cjoc.202100657

    Article  CAS  Google Scholar 

  39. Zhang YW, Zhou YM, Zhang SB, Zhou SJ, Sheng XL, Wang QL, Zhang C (2015) Catalytic structure and reaction performance of PtSnK/ZSM-5 catalyst for propane dehydrogenation: influence of impregnation strategy. J Mater Sci 50:6457–6468. https://doi.org/10.1007/s10853-015-9201-z

    Article  ADS  CAS  Google Scholar 

  40. Liu X, Lang WZ, Long LL, Hu CL, Chu LF, Guo YJ (2014) Improved catalytic performance in propane dehydrogenation of PtSn/γ-Al2O3 catalysts by doping indium. Chem Eng J 247:183–192. https://doi.org/10.1016/j.cej.2014.02.084

    Article  CAS  Google Scholar 

  41. Cao L, Qian R, Zhang YY, Luo SZ, Jiang CF, Jing FL (2023) Surface modification of PtSn/Al2O3 catalyst by organic acid chelation and its effect on propane dehydrogenation performance. J Phys Chem Solids 178:111331. https://doi.org/10.1016/j.jpcs.2023.111331

    Article  CAS  Google Scholar 

  42. Naseri M, Tahriri ZF, Taeb A (2021) Effects of Mg, Ca and K addition on Pt–Sn/γ-Al2O3 for propane dehydrogenation. Iran J Chem Chem Eng 41:1921 1931. https://doi.org/10.30492/IJCCE.2021.134840.4283

    Article  Google Scholar 

  43. Shao HQ, Wang X, Gu X, Wang DL, Jiang T, Guo XY (2021) Improved catalytic performance of CrOx catalysts supported on foamed Sn-modified alumina for propane dehydrogenation. Microporous Mesoporous Mater 311:110684. https://doi.org/10.1016/j.micromeso.2020.110684

    Article  CAS  Google Scholar 

  44. Feng BH, Wei YC, Song WY, Xu CM (2022) A review on the structure-performance relationship of the catalysts during propane dehydrogenation reaction. Petrol Sci 19:819–838. https://doi.org/10.1016/j.petsci.2021.09.015

    Article  CAS  Google Scholar 

  45. Li Q, Sui ZJ, Zhou XG, Zhu Y, Zhou JH, Chen D (2011) Coke formation on Pt–Sn/Al2O3 catalyst in propane dehydrogenation: coke characterization and kinetic study. Top Catal 54:888–896. https://doi.org/10.1007/s11244-011-9708-8

    Article  CAS  Google Scholar 

  46. Kwon HC, Park Y, Park JY, Ryoo R, Shin H, Choi M (2021) Catalytic interplay of Ga, Pt, and Ce on the alumina surface enabling high activity, selectivity, and stability in propane dehydrogenation. ACS Catal 11:10767–10777. https://doi.org/10.1021/acscatal.1c02553

    Article  CAS  Google Scholar 

  47. Xie LJ, Chai YC, Sun LL, Dai WL, Wu GJ, Guan NJ, Li LD (2021) Optimizing zeolite stabilized Pt–Zn catalysts for propane dehydrogenation. J Eng Chem 57:92–98. https://doi.org/10.1016/j.jechem.2020.08.058

    Article  CAS  Google Scholar 

  48. Fan XQ, Li JM, Zhao Z, Wei YC, Liu J, Duan AJ, Jiang GY (2015) Dehydrogenation of propane over PtSnAl/SBA-15 catalysts: Al addition effect and coke formation analysis. Catal Sci Technol 5:339–350. https://doi.org/10.1039/C4CY00951G

    Article  CAS  Google Scholar 

  49. Chen C, Sun ML, Hu ZP, Ren JT, Zhang SM, Yuan ZY (2019) New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene. Catal Sci Technol 9:1979–1988. https://doi.org/10.1039/C9CY00237E

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Fundamental Research Funds for the Central Universities (No. JKA01221712).

Author information

Authors and Affiliations

Authors

Contributions

HF: Conceptualization, Methodology, Investigation, Writing—original draft, Visualization. HZ: Writing—review & editing, Supervision, Funding acquisition. HM: Resources, Funding acquisition. WQ: Funding acquisition. WY: Writing—review & editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Weixin Qian.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Zhang, H., Ma, H. et al. Strontium Promoted PtSn/Al2O3 Catalysts for Propane Dehydrogenation to Propylene. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04619-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04619-9

Keywords

Navigation