Skip to main content
Log in

Composite Nanoarchitectonics of Co3O4 Nanopolyhedrons with N-Doped Carbon and Carbon Nanotubes for Alkaline Oxygen Evolution Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Electrochemical water splitting is deemed to be an environmentally friendly methodology for hydrogen and oxygen in various electrochemical systems. The electrocatalyst has a strong relationship with the performance of the oxygen evolution reaction (OER). Herein, Co3O4 nanopolyhedrons (Co3O4 NPs) and Co3O4 nanopolyhedrons with N-doped carbon (Co3O4 NPs-NC) were obtained by changing the pyrolysis temperature using ZIF-67 as the precursor template. Due to the poor conductivity of cobalt-based oxides, the introduction of carbon nanotubes (CNTs) significantly increased the electron transfer rate of the Co3O4 polyhedron, the Co3O4 NPs-NC/CNTs exhibited outstanding activity as a catalyst in OER. The reason for the favorable catalytic capability of this catalyst is that the Co3O4 NPs-NC with dodecahedral structure can supply abundant active sites, and its plentiful mesoporous structure can facilitate the adsorption of reactants and desorption of products. Therefore, the Co3O4 NPs-NC/CNTs composite with excellent electrochemical activity has broad application prospects as a promising catalyst.

Graphical Abstract

The excellent OER performance of Co3O4 NPs-NC/CNTs is attributed to having a polyhedral structure that replicates the ZIF-67 morphology and its rich mesoporous structure, which can provide more effective active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peng L, Yang N, Yang Y et al (2021) Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew Chem Int Ed 60:24612–24619

    Article  CAS  Google Scholar 

  2. Kang J, Qiu X, Hu Q et al (2021) Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat Catal 4:1050–1058

    Article  CAS  Google Scholar 

  3. Contributors to the journal of materials chemistry B emerging Investigators 2023 collection (2023) J Mater Chem B 11: 4428-4444

  4. Sun Y, Zheng L, Yang Y et al (2020) Metal-Organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett 12:103

    Article  ADS  CAS  Google Scholar 

  5. Fan ZS, Valentino Kaneti Y, Chowdhury S et al (2023) Weak base-modulated synthesis of bundle-like carbon superstructures from metal-organic framework for high-performance supercapacitors. Chem Eng J 462:142094

    Article  CAS  Google Scholar 

  6. Bi X, Zhang Y, Zhang F et al (2020) MOF nanosheet-based mixed matrix membranes with metal−organic coordination interfacial interaction for gas separation. ACS Appl Mater Inter 12:49101–49110

    Article  CAS  Google Scholar 

  7. Qin X, Kim D, Piao Y (2021) Metal-organic frameworks-derived novel nanostructured electrocatalysts for oxygen evolution reaction. Carbon Energy 3:66–100

    Article  CAS  Google Scholar 

  8. Farid S, Ren S, Hao C (2018) MOF-derived metal/carbon materials as oxygen evolution reaction catalysts. Inorg Chem Commun 94:57–74

    Article  CAS  Google Scholar 

  9. Qian Y, Khan IA, Zhao D (2017) Electrocatalysts derived from metal–organic frameworks for oxygen reduction and evolution reactions in aqueous media. Small 13:1701143

    Article  Google Scholar 

  10. Xu L, Wang X, Chai L et al (2019) Co3O4-anchored MWCNTs network derived from metal-organic frameworks as efficient OER electrocatalysts. Mater Lett 248:181–184

    Article  CAS  Google Scholar 

  11. Xin R, Kim M, Cheng P et al (2023) Enlarging the porosity of metal–organic framework-derived carbons for supercapacitor applications by a template-free ethylene glycol etching method. J Mater Chem A 11:12759–12769

    Article  CAS  Google Scholar 

  12. Cheng P, Wang X, Markus J et al (2023) Carbon nanotube-decorated hierarchical porous nickel/carbon hybrid derived from nickel-based metal-organic framework for enhanced methyl blue adsorption. J Colloid Interf Sci 638:220–230

    Article  ADS  CAS  Google Scholar 

  13. Begum H, Jeon S (2018) Highly efficient and stable bifunctional electrocatalyst for water splitting on Fe–Co3O4/carbon nanotubes. Hydrogen Energ 43:5522–5529

    Article  CAS  Google Scholar 

  14. Yan Y, Liu C, Jian H et al (2021) Substitutionally dispersed high-oxidation CoOx clusters in the lattice of rutile TiO2 triggering efficient Co-Ti cooperative catalytic centers for oxygen evolution reactions. Adv Funct Mater 31:2009610

    Article  CAS  Google Scholar 

  15. Guo X, Xing T, Lou Y et al (2016) Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J Solid State Chem 235:107–112

    Article  ADS  CAS  Google Scholar 

  16. Li L, Tian T, Jiang J et al (2015) Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. Power Sources 294:103–111

    Article  ADS  CAS  Google Scholar 

  17. Jing H, Song X, Ren S et al (2016) ZIF-67 derived nanostructures of Co/CoO and Co@ N-doped graphitic carbon as counter electrode for highly efficient dye-sensitized solar cells. Electrochim Acta 213:252–259

    Article  CAS  Google Scholar 

  18. Dong D, Liu Y, Li J (2016) Co3O4 hollow polyhedrons as bifunctional electrocatalysts for reduction and evolution reactions of oxygen. Part Part Syst Char 33:887–895

    Article  CAS  Google Scholar 

  19. Ahmed MS, Choi B, Kim YB (2018) Development of highly active bifunctional electrocatalyst using Co3O4 on carbon nanotubes for oxygen reduction and oxygen evolution. Sci Rep 8:2543

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Wang C, Wang Y et al (2016) Superior sodium-ion storage performance of Co3O4@ nitrogen-doped carbon: derived from a metal–organic framework. J Mater Chem A 4:5428–5435

    Article  CAS  Google Scholar 

  21. Bai L, Hsu CS, Alexander DTL et al (2019) A cobalt–iron double-atom catalyst for the oxygen evolution reaction. J Am Chem Soc 141:14190–14199

    Article  CAS  PubMed  Google Scholar 

  22. Liu W, Zhang L, Yan W et al (2016) Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem Sci 7:5758–5764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Li FM, Meng XY et al (2018) Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal 8:1913–1920

    Article  CAS  Google Scholar 

  24. Wang J, Ge X, Liu Z et al (2017) Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites. Am Chem Soc 139:1878–1884

    Article  CAS  Google Scholar 

  25. Chen C, Feng X, Zhu Q et al (2019) Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture. Inorg Chem 58:2717–2728

    Article  CAS  PubMed  Google Scholar 

  26. Fujimoto A, Yamada Y, Koinuma M et al (2016) Origins of sp3 C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal Chem 88:6110–6114

    Article  CAS  PubMed  Google Scholar 

  27. Fei X, Cao S, Ouyang W et al (2020) A convenient synthesis of core-shell Co3O4@ ZSM-5 catalysts for the total oxidation of dichloromethane (CH2Cl2). Chem Eng J 387:123411

    Article  CAS  Google Scholar 

  28. Liu B, Song W, Wu H et al (2020) Degradation of norfloxacin with peroxymonosulfate activated by nanoconfinement Co3O4@ CNT nanocomposite. Chem Eng J 398:125498

    Article  CAS  Google Scholar 

  29. Yang H, Liu Y, Luo S et al (2017) Lateral-size-mediated efficient oxygen evolution reaction: insights into the atomically thin quantum dot structure of NiFe2O4. ACS Catal 7:5557–5567

    Article  CAS  Google Scholar 

  30. Zhu K, Shi F, Zhu X et al (2020) The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 73:104761

    Article  CAS  Google Scholar 

  31. Hou Y, Wen Z, Cui S et al (2015) An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv Funct Mater 25:872–882

    Article  CAS  Google Scholar 

  32. Zhou H, Zheng M, Tang H et al (2020) Amorphous intermediate derivative from ZIF-67 and its outstanding electrocatalytic activity. Small 16:1904252

    Article  CAS  Google Scholar 

  33. Zhong H, Wang J, Zhang Y et al (2014) ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew Chem Int Ed Engl 53:14235–14239

    Article  CAS  PubMed  Google Scholar 

  34. Tran-Phu T, Daiyan R, Leverett J et al (2022) Understanding the activity and stability of flame-made Co3O4 spinels: a route towards the scalable production of highly performing OER electrocatalysts. Chem Eng J 429:132180

    Article  CAS  Google Scholar 

  35. Jiang M, He H, Yi WJ et al (2017) ZIF-67 derived Ag-Co3O4@ N-doped carbon/carbon nanotubes composite and its application in Mg-air fuel cell. Electrochem Commun 77:5–9

    Article  CAS  Google Scholar 

  36. Liu N, Tao P, Jing C et al (2018) A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation. J Mater Sci 53:15051–15063

    Article  ADS  CAS  Google Scholar 

  37. Zacho SL, Mielby J, Kegnæs S et al (2018) Hydrolytic dehydrogenation of ammonia borane over ZIF-67 derived Co nanoparticle catalysts. Catal Sci Technol 8:4741–4746

    Article  CAS  Google Scholar 

  38. Zhang SL, Guan BY, Lu XF et al (2020) Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv Mater 32:2002235

    Article  CAS  Google Scholar 

  39. Dou S, Li X, Tao L et al (2016) Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem Commun 52:9727–9730

    Article  CAS  Google Scholar 

  40. Zhou X, Xia Z, Tian Z et al (2015) Ultrathin porous Co3O4 nanoplates as highly efficient oxygen evolution catalysts. J Mater Chem A 3:8107–8114

    Article  CAS  Google Scholar 

  41. Lu Y, Fan D, Chen Z et al (2020) Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci Bull 65:460–466

    Article  CAS  Google Scholar 

  42. Yao L, Zhong H, Deng C et al (2016) Template-assisted synthesis of hierarchically porous Co3O4 with enhanced oxygen evolution activity. Energy Chem 25:153–157

    Article  Google Scholar 

  43. Yang H, Long Y, Zhu Y et al (2017) Crystal lattice distortion in ultrathin Co(OH)2 nanosheets inducing elongated Co–OOH bonds for highly efficient oxygen evolution reaction. Green Chem 19:5809–5817

    Article  CAS  Google Scholar 

  44. Yang H, Luo S, Bao Y et al (2017) In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction. Inorg Chem 4:1173–1181

    CAS  Google Scholar 

  45. Song W, Li M, Wang C et al (2021) Electronic modulation and interface engineering of electrospun nanomaterials-based electrocatalysts toward water splitting. Carbon Energy 3:101–128

    Article  CAS  Google Scholar 

  46. Xu Y, Li B, Zheng S et al (2018) Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J Mater Chem A 6:22070–22076

    Article  CAS  Google Scholar 

  47. Liu Y, Li J, Li F et al (2016) A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction. J Mater Chem A 4:4472–4478

    Article  ADS  CAS  Google Scholar 

  48. Liu Y, Li F, Yang H et al (2018) Two-Step synthesis of cobalt iron alloy nanoparticles embedded in Nitrogen-Doped carbon nanosheets/carbon nanotubes for the oxygen evolution reaction. Chem Sus Chem 11:2358–2366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the funding sources from National Natural Science Foundation of China (22168035), the Youth Science and Technology Program of Gansu Province (20JR10RA102 and 20JR5RA514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haidong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2279 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, N., Chang, S. et al. Composite Nanoarchitectonics of Co3O4 Nanopolyhedrons with N-Doped Carbon and Carbon Nanotubes for Alkaline Oxygen Evolution Reaction. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04615-z

Keywords

Navigation