Skip to main content
Log in

Structure and Electrocatalytical Properties of Electrodeposited M-Ir (M = Co, Ni) Bimetallic Alloy Catalysts with Low Ir Loading Obtained on Copper Foams for Hydrogen Evolution Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

M-iridium (M = cobalt (Co), nickel (Ni)) bimetallic alloy catalysts with low iridium (Ir) loading of 0.3–2.0 mg·cm−2 were prepared on copper foam (CF) supports by electrodeposition. The top surface of as-deposited M-Ir catalysts was mainly composed of metallic state and oxides states, such as metallic Ir, Ni(OH)2 or Co(OH)2, Co(Ir) and Ni(Ir) solid solution, Ir oxides. M-Ir catalysts with low Ir loading exhibited excellent catalytic performance. Ni63.4Ir36.6/CF catalyst with low Ir loading of 1.8 mg·cm−2 achieved a current density of 10 mA·cm2 at an overpotential of 52 mV and a Tafel slope of 36 mV·dec−1. Co64.2Ir35.8/CF catalyst with low Ir loading of 0.7 mg·cm−2 was uniformly scattered with small ellipsoidal particles, looking like fine fluff, requiring an overpotential of 51 mV for hydrogen evolution reaction to reach a current density of 10 mA·cm−2, having a Tafel slope of 38 mV·dec−1. After long-term hydrogen evolution testing, M-Ir/CF catalysts exhibited excellent electrocatalytic stability for water splitting in alkaline solution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmad S, Nawaz T, Ali A, Orhan MF, Samreen A, Kannan AM (2022) An overview of proton exchange membranes for fuel cells: materials and manufacturing. Int J Hydrog Energy 47:19086–19131. https://doi.org/10.1016/j.ijhydene.2022.04.099

    Article  CAS  Google Scholar 

  2. Jamil A, Rafiq S, Iqbal T, Khan HAA, Khan HM, Azeem B, Mustafa MZ, Hanbazazah AS (2022) Current status and future perspectives of proton exchange membranes for hydrogen fuel cells. Chemosphere 303:135204. https://doi.org/10.1016/j.chemosphere.2022.135204

    Article  CAS  PubMed  Google Scholar 

  3. Xu H, Wei J, Zhang K, Zhang M, Liu C, Guo J, Du Y (2018) Constructing bundle-like Co-Mn oxides and Co-Mn selenides for efficient overall water splitting. J Mater Chem A 6:22697–22704. https://doi.org/10.1039/C8TA07449F

    Article  CAS  Google Scholar 

  4. Wang C, Shang H, Wang Y, Xu H, Li J, Du Y (2021) Interfacial electronic structure modulation enables CoMoOx/CoOx/RuOx to boost advanced oxygen evolution electrocatalysis. J Mater Chem A 9:14601–14606. https://doi.org/10.1039/D1TA01226F

    Article  CAS  Google Scholar 

  5. Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4:3957–3971. https://doi.org/10.1021/cs500923c

    Article  CAS  Google Scholar 

  6. Hrbek T, Kúš P, KošutováT VeltruskáK, Dinhová TN, Dopita M, Matolín V, Matolínová I (2022) Sputtered Ir-Ru based catalysts for oxygen evolution reaction: study of iridium effect on stability. Int J Hydrog Energy 47:21033–21043. https://doi.org/10.1016/j.ijhydene.2022.04.224

    Article  CAS  Google Scholar 

  7. Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536. https://doi.org/10.1016/j.apenergy.2014.09.081

    Article  ADS  Google Scholar 

  8. Nørskov JK, Greeley J, Jaramillo TF, Bonde J, Chorkendorff I (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913. https://doi.org/10.1038/nmat1752

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Chand K, Paladino O (2023) Recent developments of membranes and electrocatalysts for the hydrogen production by anion exchange membrane water electrolysers: a review. Arab J Chem 16:104451. https://doi.org/10.1016/j.arabjc.2022.104451

    Article  CAS  Google Scholar 

  10. Exner KS (2020) Paradigm change in hydrogen electrocatalysis: the volcano’s apex is located at weak bonding of the reaction intermediate. Int J Hydrog Energy 45:27221–27229. https://doi.org/10.1016/j.ijhydene.2020.07.088

    Article  CAS  Google Scholar 

  11. Pi Y, Guo J, Shao Q, Huang X (2018) Highly efficient acidic oxygen evolution electrocatalysis enabled by porous Ir-Cu nanocrystals with three-dimensional electrocatalytic surfaces. Chem Mat 30:8571–8578. https://doi.org/10.1021/acs.chemmater.8b03620

    Article  CAS  Google Scholar 

  12. Özer E, Sinev I, Mingers A, Araujo J, Kropp T, Mavrikakis M, Mayrhofer K, Cuenya B, Strasser P (2018) Ir-Ni bimetallic OER catalysts prepared by controlled Ni electrodeposition on Ir poly and Ir (111). Surfaces 1:165–186. https://doi.org/10.3390/surfaces1010013

    Article  Google Scholar 

  13. Lee WH, Ko Y, Kim JH, Choi CH, Chae KH, Kim H, Hwang YJ, Min BK, Strasser P, Oh H (2021) High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nat Commun 12:4271. https://doi.org/10.1038/s41467-021-24578-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Xie Y, Su Y, Qin H, Cao Z, Wei H, Wu F, Ou G (2023) Ir-doped Co3O4 as efficient electrocatalyst for acidic oxygen evolution reaction. Int J Hydrog Energy 48:14642–14649. https://doi.org/10.1016/j.ijhydene.2022.12.292

    Article  CAS  Google Scholar 

  15. Wang Z, Lin Z, Wang Y, Shen S, Zhang Q, Wang J, Zhong W (2023) Nontrivial Topological Surface States in Ru3Sn7 toward Wide pH-Range Hydrogen Evolution Reaction. Adv Mater 35:2302007. https://doi.org/10.1002/adma.202302007

    Article  CAS  Google Scholar 

  16. Zhang M, Li X, Zhao J, Han X, Zhong C, Hu W, Deng Y (2020) Surface/interface engineering of noble-metals and transition metal-based compounds for electrocatalytic applications. J Mater Sci Technol 38:221–236. https://doi.org/10.1016/j.jmst.2019.07.040

    Article  CAS  Google Scholar 

  17. Zhou Z, Li W, Zhang Z, Zhao X, Cao W, Huang Q (2023) Ni optimizes Ir reaction pathway through IrNi alloy synergistic effect to improve overall water splitting efficiency. Int J Hydrog Energy 48:8440–8449. https://doi.org/10.1016/j.ijhydene.2022.11.178

    Article  CAS  Google Scholar 

  18. Yu Y, Hu Q, Xiao W, Wang J (2018) Wang L, Design of highly efficient Ni-based water-electrolysis catalysts by a third transition metal addition into Ni3Mo. Intermetallics 94:99–105. https://doi.org/10.1016/j.intermet.2018.01.001

    Article  CAS  Google Scholar 

  19. Zhao DK, Zhu YG, Wu QK, Zhou W, Dan JC, Zhu H, Lei W, Ma LJ, Li LG (2022) Low-loading Ir decorated cobalt encapsulated N-doped carbon nanotubes/porous carbon sheet implements efficient hydrogen/oxygen trifunctional electrocatalysis. Chem Eng J 430:132825. https://doi.org/10.1016/j.cej.2021.132825

    Article  CAS  Google Scholar 

  20. Chen Z, Duan X, Wei W, Wang S, Ni B (2020) Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 78:105270. https://doi.org/10.1016/j.nanoen.2020.105270

    Article  CAS  Google Scholar 

  21. Zheng X, Nie H, Zhan Y, Zhou X, Duan H, Yang Z (2020) Intermolecular electron modulation by P/O bridging in an IrO2-CoPi catalyst to enhance the hydrogen evolution reaction. J Mater Chem A 8:8273–8280. https://doi.org/10.1039/D0TA00703J

    Article  CAS  Google Scholar 

  22. Dai Q, Meng Q, Du C, Ding F, Huang J, Nie J, Zhang X, Chen J (2020) Spontaneous deposition of Ir nanoparticles on 2D siloxene as a high-performance HER electrocatalyst with ultra-low Ir loading. Chem Commun 56:4824–4827. https://doi.org/10.1039/D0CC00245C

    Article  CAS  Google Scholar 

  23. Gong S, Wang C, Jiang P, Yang K, Lu J, Huang M, Chen S, Wang J, Chen Q (2019) O species-decorated graphene shell encapsulating iridium-nickel alloy as an efficient electrocatalyst towards hydrogen evolution reaction. J Mater Chem A 7:15079–15088. https://doi.org/10.1039/C9TA04361F

    Article  CAS  Google Scholar 

  24. Wu WP, Lin S, Wang QQ (2023) Growth mode and characterizations of electrodeposited Re thick films from aqueous solutions with additives on Cu (110) + (311) substrates. J Vac Sci Technol B 41:044003. https://doi.org/10.1116/6.0002691

    Article  CAS  Google Scholar 

  25. Wu WP, Zhou YC, He G, Näther J, Liu YX, Köster F, Lampke T (2023) The influence of Re content on microstructure, grain size, microhardness and abrasion resistance of electrodeposited Ni–Re alloy coatings. Wear 512–513:204551. https://doi.org/10.1016/j.wear.2022.204551

    Article  CAS  Google Scholar 

  26. Wu WP, Huang JQ, Näther J, Omar NAB, Köster F, Thomas L, Liu YX, Pan HJ, Zhang Y (2021) Texture orientation, morphology and performance of nanocrystalline nickel coatings electrodeposited from a Watts-type bath: effects of H3BO3 concentration and plating time. Surf Coat Technol 424:127648. https://doi.org/10.1016/j.surfcoat.2021.127648

    Article  CAS  Google Scholar 

  27. Wu WP, Näther J, Köster F, Lampke T (2022) Sodium hexabromoiridate(III) for the electroplating of Ir-Ni and Ir-Re-Ni alloy coatings. Thin Solid Films 755:139323. https://doi.org/10.1016/j.tsf.2022.139323

    Article  CAS  ADS  Google Scholar 

  28. Näther J, Köster F, Freudenberger R, Schöberl C, Lampke T (2017) Electrochemical deposition of iridium and iridium-nickel-alloys. IOP Conf Ser: Mater Sci Eng 181:12041. https://doi.org/10.1088/1757-899X/181/1/012041

    Article  Google Scholar 

  29. Papaderakis A, Pliatsikas N, Patsalas P, Tsiplakides D, Balomenou S, Touni A, Sotiropoulos S (2018) Hydrogen evolution at Ir-Ni bimetallic deposits prepared by galvanic replacement. J Electroanal Chem 808:21–27. https://doi.org/10.1016/j.jelechem.2017.11.055

    Article  CAS  Google Scholar 

  30. Kim M, Kang H, Hwang E, Park Y, Jeong W, Hwang YJ, Ha D (2023) Facile colloidal synthesis of transition metal (Co, Fe, and Ni)-added Ir-W NPs for HER in acidic electrolyte. Appl Surf Sci 612:155862. https://doi.org/10.1016/j.apsusc.2022.155862

    Article  CAS  Google Scholar 

  31. Zhang Z, Xia Y, Ye M, Wen D, Zhang W, Peng W, Tian L, Hu W (2022) Low Ir-content Ir/Fe@NCNT bifunctional catalyst for efficient water splitting. Int J Hydrog Energy 47:13371–13385. https://doi.org/10.1016/j.ijhydene.2022.02.078

    Article  CAS  Google Scholar 

  32. Ma S, Deng J, Xu Y, Tao W, Wang X, Lin Z, Zhang Q, Gu L, Zhong W (2022) Pollen-like self-supported FeIr alloy for improved hydrogen evolution reaction in acid electrolyte. J Energy Chem 66:560–565. https://doi.org/10.1016/j.jechem.2021.08.066

    Article  CAS  Google Scholar 

  33. Liu JW, Wu WP, Wang X (2021) Electrodeposition of iridium-nickel thin films on copper foam: effects of loading and solution temperature on HER performance of electrocatalyst in alkaline water. Johns Matthey Technol Rev 1:94–111. https://doi.org/10.1595/205651320X15911991747174

    Article  ADS  Google Scholar 

  34. Näther J, Liu JW, Wu WP, Köster F, Lampke T (2021) Galvanic deposited Ni-Ir electrocatalyst for electrolysers. Mater Lett 297:129820. https://doi.org/10.1016/j.matlet.2021.129820

    Article  CAS  Google Scholar 

  35. Wu WP, Liu JW, Näther J, Zhang L, Zhang Y, Hua T, Liu L (2020) Galvanostatic electrodeposition of thin-film Ir-Ni electrocatalyst on copper foam for HER performance in alkaline electrolyte. Catal Lett 150:1325–1336. https://doi.org/10.1007/s10562-019-03038-5

    Article  CAS  Google Scholar 

  36. Wu WP, Liu JW, Näther J (2021) Electrodeposition of Ir-Co thin films on copper foam as high-performance electrocatalysts for efficient water splitting in alkaline medium. Int J Hydrog Energy 46:609–621. https://doi.org/10.1016/j.ijhydene.2020.09.268

    Article  CAS  Google Scholar 

  37. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786. https://doi.org/10.1038/nmat3087

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Ju L, Zhang Y, Zhou YC, Wu WP (2023) Structure and performance of iridium electrocatalysts for hydrogen evolution reaction obtained by electrodeposition and double glow plasma: a comparative study. Mater Lett 352:135127. https://doi.org/10.1016/j.matlet.2023.135127

    Article  CAS  Google Scholar 

  39. Zhang K, Wang F, Li X, Wang S, Wang Y, Zha Q, Ni Y (2023) Connected design of Ni foam-supported porous Ni and FeOOH/porous Ni electrocatalysts for overall water splitting in alkaline media. J Alloy Compd 942:169014. https://doi.org/10.1016/j.jallcom.2023.169014

    Article  CAS  Google Scholar 

  40. Zhang S, Zhang X, Shi X, Zhou F, Wang R, Li X (2020) Facile fabrication of ultrafine nickel-iridium alloy nanoparticles/graphene hybrid with enhanced mass activity and stability for overall water splitting. J Energy Chem 49:166–173. https://doi.org/10.1016/j.jechem.2020.02.022

    Article  Google Scholar 

  41. Xu C, Sun F, Gao H, Wang J (2013) Nanoporous platinum-cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Anal Chim Acta 780:20–27. https://doi.org/10.1016/j.aca.2013.03.068

    Article  CAS  PubMed  Google Scholar 

  42. Atomic Radius of Chemical Elements (2023) Material Properties. https://material-properties.org/atomic-radius-of-chemical-elements/. Accessed 28 May 2023.

  43. Wu WP, Huang JQ, Näther J, Kösterb F, Lampke T (2023) Electrodeposition and performance of bright nickel–rhenium coatings obtained from watts-type electrolytes. Russ J Electrochem 59:419–429. https://doi.org/10.1134/S102319352305004X

    Article  Google Scholar 

  44. Wu WP, Wang ZZ, Jiang P, Tang ZP (2017) Effect of electroplating variables on electrodeposition of Ni rich Ni-Ir alloys from citrate aqueous solutions. J Electrochem Soc 164:D985–D993. https://doi.org/10.1149/2.0771714jes

    Article  CAS  Google Scholar 

  45. Wu WP, Jiang JJ, Jiang P, Wang ZZ, Yuan NY, Ding JN (2018) Electrodeposition of nickel-iridium alloy films from aqueous solutions. Appl Surf Sci 434:307–317. https://doi.org/10.1016/j.apsusc.2017.10.180

    Article  CAS  ADS  Google Scholar 

  46. Greczynski G, Haasch RT, Hellgren N (2023) X-ray photoelectron spectroscopy of thin films. Nat Rev Methods Primers 3:40. https://doi.org/10.1038/s43586-023-00225-y

    Article  CAS  Google Scholar 

  47. Murakami R, Harada Y, Sonobayashi Y, Oji H, Makino H, Tanaka H, Taguchi H, Sakamoto T, Morita H, Wakamori A, Kibe N, Nishida S, Nagata K, Shinotsuka H, Shouno H, Yoshikawa H (2023) Correlation analysis with measurement conditions and peak structures in XPS spectral round-robin tests on MnO powder sample. J Electron Spectrosc 264:147298. https://doi.org/10.1016/j.elspec.2023.147298

    Article  CAS  Google Scholar 

  48. Yao K, Zhai M, Ni Y (2019) α-Ni(OH)2·0.75H2O nanofilms on Ni foam from simple NiCl2 solution: fast electrodeposition, formation mechanism and application as an efficient bifunctional electrocatalyst for overall water splitting in alkaline solution. Electrochim Acta 301:87–96. https://doi.org/10.1016/j.electacta.2019.01.152

    Article  CAS  Google Scholar 

  49. Fan H, Quan L, Yuan M, Zhu S, Wang K, Zhong Y, Chang L, Shao H, Wang J, Zhang J, Cao C (2016) Thin Co3O4 nanosheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. Electrochim Acta 188:222–229. https://doi.org/10.1016/j.electacta.2015.12.011

    Article  CAS  Google Scholar 

  50. Zhang LL, Shi XX, Xu AJ, Zhong WW, Zhang JT, Shen SJ (2023) Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution. Nano Res. https://doi.org/10.1007/s12274-023-6270-1

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Arrigo R, Teschner D, Girgsdies F, Scherzer M, Greiner MT, Allan J, Hashagen M, Weinberg G, Piccinin S, Hävecker M, Knop-Gericke A, Schlögl R (2016) The electronic structure of iridium and its oxides. Surf Interface Anal 48:261–273. https://doi.org/10.1002/sia.5895

    Article  CAS  Google Scholar 

  52. Yeo K-R, Choi KJ, Kim S-K (2023) Enhanced alkaline hydrogen oxidation reaction using electrodeposited Ni-Ir alloy catalysts. Appl Surf Sci 614:156207. https://doi.org/10.1016/j.apsusc.2022.156207

    Article  CAS  Google Scholar 

  53. Li A, Sun Y, Yao T, Han H (2018) Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen. Chem Eur J 24:18334–18355. https://doi.org/10.1002/chem.201803749

    Article  CAS  PubMed  Google Scholar 

  54. Shen F, Wang Y, Qian G, Chen W, Jiang W, Luo L, Yin S (2020) Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density. Appl Catal B 278:119327. https://doi.org/10.1016/j.apcatb.2020.119327

    Article  CAS  Google Scholar 

  55. Kim SJ, Jung H, Lee C, Kim MH, Lee YM (2019) Comparative study on hydrogen evolution reaction activity of electrospun nanofibers with diverse metallic Ir and IrO2 composition ratios. ACS Sustain Chem Eng 7:8613–8620. https://doi.org/10.1021/acssuschemeng.9b00402

    Article  CAS  Google Scholar 

  56. Watanabe M, Tryk DA, Wakisaka M, Yano H, Uchida H (2012) Overview of recent developments in oxygen reduction electrocatalysis. Electrochim Acta 84:187–201. https://doi.org/10.1016/j.electacta.2012.04.035

    Article  CAS  Google Scholar 

  57. Michael AH (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308. https://doi.org/10.1016/S0167-5729(01)00020-6

    Article  Google Scholar 

  58. McCrum IT, Koper MTM (2020) The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat Energy 5:891–899. https://doi.org/10.1038/s41560-020-00710-8

    Article  CAS  ADS  Google Scholar 

  59. Hahn F (1986) In situ uv visible reflectance spectroscopic investigation of the nickel. Electrochim Acta 3:335–342. https://doi.org/10.1016/0013-4686(86)80087-1

    Article  Google Scholar 

  60. Dong S, Xie Y, Cheng G (1992) Cyclic voltammetric and spectroelectrochemical studies of copper in alkaline solution. Electrochim Acta 37:17–22. https://doi.org/10.1016/0013-4686(92)80005-7

    Article  CAS  Google Scholar 

  61. Mozota J, Conway BE (1983) Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour. Electrochim Acta 28:1–8. https://doi.org/10.1016/0013-4686(83)85079-8

    Article  CAS  Google Scholar 

  62. Grdeń M, Klimek K, Rogulski Z (2009) A quartz crystal microbalance study on oxidation of a cobalt electrode in an alkaline solution. Electrochem Commun 11:499–503. https://doi.org/10.1016/j.elecom.2008.12.037

    Article  CAS  Google Scholar 

  63. Wessling B, Mokwa W, Schnakenberg U (2008) Sputtered Ir Films evaluated for electrochemical performance I. experimental results. J Electrochem Soc 155:F61–F65. https://doi.org/10.1149/1.2844805

    Article  CAS  Google Scholar 

  64. Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327(1–2):353–376. https://doi.org/10.1016/0022-0728(92)80162-W

    Article  CAS  Google Scholar 

  65. Yang YQ, Zhang WB, Xiao YL, Shi ZP, Cao XM, Tang Y, Gao QS (2019) CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution. Appl Catal B 242:132–139. https://doi.org/10.1016/j.apcatb.2018.09.082

    Article  CAS  Google Scholar 

  66. Wei D, Liu ZH, Peng JJ, Lü SF, Jiang HY, Yang F, Liu HH (2022) Electrodeposited NiMoP catalysts on carbon felt for hydrogenation of indigo during electrocatalytically splitting water. Int J Hydrog Energy 47:27566–27578. https://doi.org/10.1016/j.ijhydene.2022.06.101

    Article  CAS  Google Scholar 

  67. Yu L, Ren Z (2020) Systematic study of the influence of iR compensation on water electrolysis. Mater Today Phys 14:100253. https://doi.org/10.1016/j.mtphys.2020.100253

    Article  Google Scholar 

  68. Zeng JR, Liu JW, Siwal SS, Yang WQ, Fu XZ, Zhang QB (2019) Morphological and electronic modification of 3D porous nickel microsphere arrays by cobalt and sulfur dual synergistic modulation for overall water splitting electrolysis and supercapacitors. Appl Surf Sci 491:570–578. https://doi.org/10.1016/j.apsusc.2019.06.182

    Article  CAS  ADS  Google Scholar 

  69. Li LG, Wang PT, Shao Q, Huang XQ (2020) Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem Soc Rev 49:3072–3106. https://doi.org/10.1039/D0CS00013B

    Article  CAS  PubMed  Google Scholar 

  70. Hao J, Zhuang ZC, Cao KC, Gao GH, Wang C, Lai FL, Lu SL, Ma P, Dong WF, Liu TX, Du ML, Zhu H (2022) Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat Commun 13:2662. https://doi.org/10.1038/s41467-022-30379-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Chen YJ, Lee YY, Chu W, Li J (2023) Trace Ru-tuned NiO/CNT electrocatalysts outperform benchmark Pt for alkaline hydrogen evolution with superior mass activity. Chem Eng J 472:144922. https://doi.org/10.1016/j.cej.2023.144922

    Article  CAS  Google Scholar 

  72. Chen WF, Wang CH, Sasaki K, Marinkovic N, Xu W, Muckerman JT, Zhu Y, Adzic RR (2013) Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ Sci 6:943–951. https://doi.org/10.1039/c2ee23891h

    Article  CAS  Google Scholar 

  73. Luo M, Yang JT, Li XG, Eguchi M, Yamauchi Y, Wang ZL (2023) Insights into alloy/oxide or hydroxide interfaces in Ni-Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem Sci 14:3400–3414. https://doi.org/10.1039/D2SC06298D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu TQ, Xu QL, Chen JL, Qian GF, Zhuo XY, Yang HF, Yin SB (2022) Boosting urea-assisted water splitting by constructing sphere-flower-like NiSe2-NiMoO4 heterostructure. Chem Eng J 449:137791. https://doi.org/10.1016/j.cej.2022.137791

    Article  CAS  Google Scholar 

  75. Lin Z, Wang Z, Gong J, Jin T, Shen S, Zhang Q, Wang J, Zhong W (2023) Reversed Spillover Effect Activated by Pt Atom Dimers Boosts Alkaline Hydrogen Evolution Reaction. Adv Funct Mater 33:2307510. https://doi.org/10.1002/adfm.202307510

    Article  CAS  Google Scholar 

  76. Liu J, Wang Z, Zhang D, Qin Y, Xiong J, Lai J, Wang L (2022) Systematic engineering on Ni-based nanocatalysts effectively promote hydrogen evolution reaction. Small 18:2108072. https://doi.org/10.1002/smll.202108072

    Article  CAS  Google Scholar 

  77. Geng S, Ji Y, Su J, Hu Z, Fang M, Wang D, Liu S, Li L, Li Y, Chen J-M, Lee J-F, Huang X, Shao Q (2023) Homogeneous metastable hexagonal phase iridium enhances hydrogen evolution catalysis. Adv Sci 10:2206063. https://doi.org/10.1002/advs.202206063

    Article  CAS  Google Scholar 

  78. Li S, Xi C, Jin YZ, Wu DY, Wang JQ, Liu T, Wang HB, Dong CK, Liu H, Kulinich SA, Du XW (2019) Ir-O-V catalytic group in Ir-doped NiV(OH)2 for overall water splitting. ACS Energy Lett 4:1823–1829. https://doi.org/10.1021/acsenergylett.9b01252

    Article  CAS  Google Scholar 

  79. Pu Z, Zhao J, Amiinu IS, Li W, Wang M, He D, Mu S (2019) A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ Sci 12:952–957. https://doi.org/10.1039/C9EE00197B

    Article  CAS  Google Scholar 

  80. He Y, Xu J, Wang F, Zhao X, Yin G, Mao Q, Huang Y, Zhang T (2017) In-situ carbonization approach for the binder-free Ir-dispersed ordered mesoporous carbon hydrogen evolution electrode. J Energy Chem 26:1140–1146. https://doi.org/10.1016/j.jechem.2017.05.004

    Article  Google Scholar 

  81. Jiang P, Huang H, Diao J, Gong S, Chen S, Lu J, Wang C, Sun Z, Xia G, Yang K, Yang Y, Wei L, Chen Q (2019) Improving electrocatalytic activity of iridium for hydrogen evolution at high current densities above 1000 mA cm−2. Appl Catal B 258:117965. https://doi.org/10.1016/j.apcatb.2019.117965

    Article  CAS  Google Scholar 

  82. Jiang P, Chen J, Wang C, Yang K, Gong S, Liu S, Lin Z, Li M, Xia G, Yang Y, Su J, Chen Q (2018) Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv Mater 30:1705324. https://doi.org/10.1002/adma.201705324

    Article  CAS  Google Scholar 

  83. Baghban A, Habibzadeh S, Zokaee Ashtiani F (2021) On the evaluation of hydrogen evolution reaction performance of metal-nitrogen-doped carbon electrocatalysts using machine learning technique. Sci Rep 11:21911. https://doi.org/10.1038/s41598-021-00031-0

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  84. Kordek-Khalil K, Janas D, Rutkowski P (2021) Revealing the effect of electrocatalytic performance boost during hydrogen evolution reaction on free-standing SWCNT film electrode. Sci Rep 11:19981. https://doi.org/10.1038/s41598-021-99458-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Li J, Hu J, Zhang M (2021) A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat Commun 12:3502. https://doi.org/10.1038/s41467-021-23750-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for their helpful suggestions, and thank Mr. Guang Yang from the Analysis and Testing Center, NERC Biomass of Changzhou University for the discussion and for helping in the XRD measurement. The authors would also like to thank Johnson Matthey plc for the award of the platinum group metal materials used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangping Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 758 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Ju, L., Yang, Y. et al. Structure and Electrocatalytical Properties of Electrodeposited M-Ir (M = Co, Ni) Bimetallic Alloy Catalysts with Low Ir Loading Obtained on Copper Foams for Hydrogen Evolution Reaction. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04598-x

Keywords

Navigation