Skip to main content
Log in

Formation of Polystyrene Coated Persulfate Slow-Release Candles for Polycyclic Aromatic Hydrocarbon Oxidation in Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Slow-release oxidation is important for effectively and selectively treating aromatic hydrocarbon pollutants like phenol in water. This research work focuses on persulfate candles formation for slow-relaese oxidation of phenol in water. To control the persulfate release rate polystyrene coating was applied to the beads. Four predetermined PAHs to ferrous molar ratios accompanied with persulfate candles were applied for the oxidation process. In the presence of ferrous activator the degradation of phenol was achieved. The increasing concentration of ferrous with constant persulfate and phenol concentration the higher degradation can be achieved up to certain Ph:Fe+2 ratio. The crossing the optimum ratio the inhibition starts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhao D, Liao X, Yan X, Huling SG, Chai T, Tao H (2013) Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 254–255:228–235. https://doi.org/10.1016/J.JHAZMAT.2013.03.056

    Article  PubMed  Google Scholar 

  2. Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut 132:1–11. https://doi.org/10.1016/J.ENVPOL.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  3. Wilcke W (2007) Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma 141:157–166. https://doi.org/10.1016/J.GEODERMA.2007.07.007

    Article  ADS  CAS  Google Scholar 

  4. Maliszewska-Kordybach B, Smreczak B, Klimkowicz-Pawlas A, Terelak H (2008) Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 73:1284–1291. https://doi.org/10.1016/J.CHEMOSPHERE.2008.07.009

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Jinshu Z, Richardson BJ, Shouming O, Jianhua Z (2004) Distribution and sources of polycyclic aromatic hydrocarbon (PAH) in marine environment of China Chinese. J Oceanol Limnol 22(136):145. https://doi.org/10.1007/BF02842584

    Article  Google Scholar 

  6. Maliszewska-Kordybach B (1999) Persistent Organic Contaminants in the Environment: PAHs as a Case Study. Org. Xenobiotics Environ, Bioavailab. https://doi.org/10.1007/978-94-015-9235-2_1

    Book  Google Scholar 

  7. Wania F, MacKay D (1996) Peer reviewed: tracking the distribution of persistent organic pollutants. EnST 30:390A-396A. https://doi.org/10.1021/ES962399Q

    Article  ADS  CAS  Google Scholar 

  8. Sram RJ, Beskid O, Rössnerova A, Rössner P, Lnenickova Z, Milcova A, Solansky I, Binkova B (2007) Environmental exposure to carcinogenic polycyclic aromatic hydrocarbons–the interpretation of cytogenetic analysis by FISH. Toxicol Lett 172:12–20. https://doi.org/10.1016/J.TOXLET.2007.05.019

    Article  CAS  PubMed  Google Scholar 

  9. Shaw GR, Connell DW (1994) Prediction and monitoring of the carcinogenicity of polycyclic aromatic compounds (PACs). Rev Environ Contam Toxicol 135:1–62. https://doi.org/10.1007/978-1-4612-2634-5_1

    Article  CAS  PubMed  Google Scholar 

  10. Kim MJ, Hwang JH, Shin HS (2014) Evaluation of polycyclic aromatic hydrocarbon contents and risk assessment for fish and meat products in Korea. Food Sci Biotechnol 23:991–998. https://doi.org/10.1007/S10068-014-0134-0

    Article  CAS  Google Scholar 

  11. Tarafdar A, Sinha A (2017) Cancer risk assessment of polycyclic aromatic hydrocarbons in the soils and sediments of India: a meta-analysis. Environ Manage 60:784–795. https://doi.org/10.1007/S00267-017-0920-6

    Article  ADS  PubMed  Google Scholar 

  12. Tsitonaki A, Petri B, Crimi M, Mosbk H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Critical Rev Environ Sci Technol 40(1):55–91. https://doi.org/10.1080/10643380802039303

    Article  CAS  Google Scholar 

  13. Huie RE, Clifton CL, Neta P (1991) Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. Int J Radiat Appl Instrumentation Part C Radiat Phys Chem 38:477–481. https://doi.org/10.1016/1359-0197(91)90065-A

    Article  CAS  Google Scholar 

  14. Bharadwaj LM, Sharma DN, Gupta YK (1977) Kinetics and mechanism of oxidations by peroxydiphosphate ions—V Oxidation of iodide in aqueous perchloric acid. J Inorg Nucl Chem 39:1621–1623. https://doi.org/10.1016/0022-1902(77)80114-0

    Article  CAS  Google Scholar 

  15. Ross C, Murdoch LC, Freedman DL, Siegrist RL (2005) Characteristics of potassium permanganate encapsulated in polymer. J Environ Eng 131:1203–1211. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:8(1203)

    Article  CAS  Google Scholar 

  16. Liang SH, Kao CM, Kuo YC, Chen KF, Yang BM (2011) In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system. Water Res 45:2496–2506. https://doi.org/10.1016/J.WATRES.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  17. Kambhu A, Comfort S, Chokejaroenrat C, Sakulthaew C (2012) Developing slow-release persulfate candles to treat BTEX contaminated groundwater. Chemosphere 89:656–664. https://doi.org/10.1016/J.CHEMOSPHERE.2012.06.004

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Abbas W, Abbas S, Nawaz M, Azam M, Oh JM, Shahzad A (2021) Development of polystyrene coated persulfate slow-release beads for the oxidation of targeted PAHs: effects of sulfate and chloride ions. J Hazard Mater 416:125879. https://doi.org/10.1016/J.JHAZMAT.2021.125879

    Article  CAS  PubMed  Google Scholar 

  19. Zhao X, Zhang Y, Hou ZW, Wang L (2023) Chloride-promoted photoelectrochemical C-H silylation of heteroarenes. Chinese J Chem. https://doi.org/10.1002/cjoc.202300288

    Article  Google Scholar 

  20. Huang H, Liu L, Wang J, Zhou Y, Hu H, Ye X, Tang BZ (2022) Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging. Chem Sci 13(11):3129–3139. https://doi.org/10.1039/D2SC00380E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma J, Li J, Weng L, Ouyang X, Chen Y, Li Y (2023) Phosphorus-enhanced and calcium-retarded transport of ferrihydrite colloid: mechanism of electrostatic potential changes regulated via adsorption speciation. Environ Sci Technol 57(10):4219–4230. https://doi.org/10.1021/acs.est.2c09670

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Sun Z, Russell CK, Whitty KJ, Eddings EG, Dai J, Zhang Y, Sun Z (2023) Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation. Prog Energy Combust Sci 96:101045. https://doi.org/10.1016/j.pecs.2022.101045

    Article  Google Scholar 

  23. Nie S, Mo S, Gao T, Yan B, Shen P, Kashif M, Jiang C (2023) Coupling effects of nitrate reduction and sulfur oxidation in a subtropical marine mangrove ecosystem with spartina alterniflora invasion. Sci Total Environ 862:160930. https://doi.org/10.1016/j.scitotenv.2022.160930

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Xu P, Liu X, Zhao Y, Lan D, Shin I (2023) Study of graphdiyne biomimetic nanomaterials as fluorescent sensors of ciprofloxacin hydrochloride in water environment. Desalin Water Treat 302:129–137. https://doi.org/10.5004/dwt.2023.29723

    Article  CAS  Google Scholar 

  25. Kong L, Liu Y, Dong L, Zhang L, Qiao L, Wang W, You H (2020) Enhanced red luminescence in CaAl12O19:Mn4+via doping Ga3+ for plant growth lighting. Dalton Trans 49(6):1947–1954. https://doi.org/10.1039/C9DT04086B

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farwa Asmat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, W., Hussain, M., Khan, S.U. et al. Formation of Polystyrene Coated Persulfate Slow-Release Candles for Polycyclic Aromatic Hydrocarbon Oxidation in Water. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04582-5

Keywords

Navigation