Skip to main content
Log in

Preparation and Characterization of Nb2O5/C-CNT Catalysts for the Selective Oxidation of Cyclopentene to Glutaraldehyde

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of niobium-based catalysts with carboxylated multi-walled carbon nanotube (C-CNT) as support were prepared by modified wet-chemical technique under ultrasonication. Three types of catalysts with active component niobium attached only on the inner or outer walls respectively, or mainly on the outer walls were obtained by adjusting the impregnation strategies. The catalysts were characterized systematically by SEM, TEM, XRD, Raman, FT-IR, XPS, and N2 adsorption–desorption. It was found that niobia species was highly dispersed on the outer wall or the channels of C-CNT. There are abundant oxygen-containing groups on the catalysts. Strong chemical interactions between the support and Nb2O5 are evident. The catalytic performances of the C-CNT-supported catalysts were evaluated for the selective oxidation of cyclopentene (CPE) to glutaraldehyde (GA) with 30 wt% aqueous H2O2 as oxidant. The conversion of CPE and the selectivity to GA reached 98.3% and 59.3% respectively under the optimized conditions. No significant deterioration of the catalytic performance was found in the catalyst-cycling experiments, indicating the stability of the catalyst. Hot filtration experiments revealed that the catalytic reaction was heterogeneous. The good performance of the catalyst in ethanol makes the catalytic system of an excellent application prospect.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Kamil M, Ramadan KM, Olabi AG, Al-Ali EI, Ma X, Awad OI (2020) Economic, technical, and environmental viability of biodiesel blends derived from coffee waste. Renew Energ 147:1880–1894

    Article  CAS  Google Scholar 

  2. Nitzsche R, Budzinski M, Gröngröft A (2016) Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel. Bioresource Technol 200:928–939

    Article  CAS  Google Scholar 

  3. Wei QL, Chen XP, He YJ, Fu JW, Liang JZ, Wei XJ et al (2022) Ni nanoparticles supported on N-doped carbon nanotubes for efficient hydrogenation of C5 hydrocarbon resins under mild conditions. Micropor Mesopor Mat 333:111727

    Article  CAS  Google Scholar 

  4. Rahmatpour A, Meymandi MG (2021) Large-scale production of C9 aromatic hydrocarbon resin from the cracked-petroleum-derived C9 fraction: chemistry, scalability, and techno-economic analysis. Org Process Res Dev 25:120–135

    Article  CAS  Google Scholar 

  5. Qi YL, Liu SJ, Cui L, Dai QQ, Bai CX (2020) Converting formaldehyde-methylethylketone adduct to a nonlinear C5 1,3-diol over Pt-ceria catalysts for isoprene production. Appl Catal A-Gen 603:117745

    Article  CAS  Google Scholar 

  6. Guo L, Wang TF, Li DF, Wang JF (2017) Liquid-holdup regions research of novel reactive distillation column for C5 fraction separation. Chin J Chem Eng 25:433–441

    Article  CAS  Google Scholar 

  7. Hou X, Song CG, Ma ZZ, Chen BC, Zhao L, Huang J et al (2022) Universality analysis of the reaction pathway and product distribution in C5–C10 n-alkanes pyrolysis. J Anal Appl Pyrol 162:105451

    Article  CAS  Google Scholar 

  8. Hou JY, Guo F, Hu Q, Li Y, Hou ZM (2019) Neodymium-catalyzed polymerization of C5 fraction: efficient synthesis of 1,3-pentadiene-isoprene copolymer rubbers. Chinese J Polym Sci 37:674–680

    Article  CAS  Google Scholar 

  9. Vajhadin F, Mazloum-Ardakani M, Raeisi S, Hemati M, Ebadi A, Haghiralsadat F et al (2022) Glutaraldehyde crosslinked doxorubicin promotes drug delivery efficiency using cobalt ferrite nanoparticles. Colloid Surface B 220:112870

    Article  CAS  Google Scholar 

  10. Nambiar AP, Pillai R, Vadikkeettil Y, Sanyal M, Shrivastav PS (2022) Glutaraldehyde-crosslinked poly(vinyl alcohol)/halloysite composite films as adsorbent for methylene blue in water. Mater Chem Phys 291:126752

    Article  CAS  Google Scholar 

  11. Singh RS, Singh T (2022) Glutaraldehyde functionalization of halloysite nanoclay enhances immobilization efficacy of endoinulinase for fructooligosaccharides production from inulin. Food Chem 381:132253

    Article  CAS  PubMed  Google Scholar 

  12. Taylor RJ, Geeson MB, Journeaux T, Bernardes GJL (2022) Chemical and enzymatic methods for post-translational protein-protein conjugation. J Am Chem Soc 144:14404–14419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rong J, Wu YD, Ji XH, Zhao TT, Yin BS, Rao YT et al (2022) Porphyrinatonickel(II)-cyclopentene and porphyrinatonickel(II)-cyclopentadiene hybrids: zirconacyclopentadiene-mediated syntheses, structures, and mechanistic study. Org Lett 24:6128–6132

    Article  CAS  PubMed  Google Scholar 

  14. Xu XH, Chen HY, Deng JF, Jiang AR (1993) Preparation of glutaraldehyde by catalytic oxidation of cyclopentene with aqueous-solution of hydrogen-peroxide. Acta Chim Sin 51:399–403

    CAS  Google Scholar 

  15. Yang XL, Dai WL, Gao RH, Fan KN (2007) Characterization and catalytic behavior of highly active tungsten-doped SBA-15 catalyst in the synthesis of glutaraldehyde using an anhydrous approach. J Catal 249:278–288

    Article  CAS  Google Scholar 

  16. Yang XL, Yin AY, Dai WL, Fan KN (2011) Synthesis of highly efficient WO3-doped MCF catalyst and Its application in the selective oxidation of cyclopentene to glutaraldehyde. Acta Phys-Chim Sin 27(1):177–185

    Article  Google Scholar 

  17. Jin RH, Li HX, Deng JF (2001) Selective oxidation of cyclopentene to glutaraldehyde by H2O2 over the WO3/SiO2 catalyst. J Catal 203:75–81

    Article  CAS  Google Scholar 

  18. Yang XL, Dai WL, Guo CW, Chen H, Cao Y, Li HX et al (2005) Synthesis of novel core-shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. J Catal 234:438–450

    Article  CAS  Google Scholar 

  19. Jin MM, Guo ZM, Lv ZG (2019) Immobilization of tungsten chelate complexes on functionalized mesoporous silica SBA-15 as heterogeneous catalysts for oxidation of cyclopentene. J Mater Sci 54:6853–6866

    Article  CAS  Google Scholar 

  20. Xu JH, Dai WL, Yang XL, Cao Y, Fan KN (2004) Novel MCM-41 supported niobium acid for the catalytic oxidation of cyclopentene to glutaraldehyde. Acta Chim Sin 62(16):1467–1471

    CAS  Google Scholar 

  21. Qi Y, Han Q, Wu L, Li J (2021) Selective oxidation of cyclopentene to glutaraldehyde by H2O2 over Nb-SBA-15. New J Chem 45:19264–19272

    Article  CAS  Google Scholar 

  22. Zhang JJ, Mai JH, Chen JZ, Wang X, Mai YL (2022) Selective catalytic oxidation of cyclopentene to glutaraldehyde over amorphous Nb2O5/AC catalysts. Chemistry Select 7:1–5

    Google Scholar 

  23. Wang WL, Yang GX, Wang Q, Cao YH, Wang HJ, Yu H (2022) Modifying carbon nanotubes supported palladium nanoparticles via regulating the electronic metal-carbon interaction for phenol hydrogenation. Chem Eng J 436:131758

    Article  CAS  Google Scholar 

  24. Shan JX, Sun XQ, Zheng SY, Wang TD, Zhang XW, Li GZ (2019) Graphitic N-dominated nitrogen-doped carbon nanotubes as efficient metal-free catalysts for hydrogenation of nitroarenes. Carbon 146:60–69

    Article  CAS  Google Scholar 

  25. Xiong W, Wang ZN, He SL, Hao F, Yang YZ, Lv Y et al (2020) Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation. Appl Catal B-Environ 260:118105

    Article  CAS  Google Scholar 

  26. Mo Z, Xu KQ, Yu LM, Huang TY, Song YH, Yuan JJ et al (2022) Activation of Fe species on graphitic carbon nitride nanotubes for efficient photocatalytic ammonia synthesis. Int J Energy Res 46:13453–13462

    Article  CAS  Google Scholar 

  27. Zhong X, Zhu YX, Sun QF, Jiang M, Li JQ, Yao JF (2022) Tunable z-scheme and type II heterojunction of CuxO nanoparticles on carbon nitride nanotubes for enhanced visible-light ammonia synthesis. Chem Eng J 442:136156

    Article  CAS  Google Scholar 

  28. Liu XW, Kumar PV, Chen Q, Zhao LJ, Ye FH, Ma XY et al (2022) Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Appl Catal B-Environ 316:121618

    Article  CAS  Google Scholar 

  29. Yahyazadeh A, Borugadda VB, Dalai AK, Zhang LF (2022) Optimization of olefins’ yield in Fischer-Tropsch synthesis using carbon nanotubes supported iron catalyst with potassium and molybdenum promoters. Appl Catal A-Gen 643:118759

    Article  CAS  Google Scholar 

  30. Zhang J, Muller JO, Zheng WQ, Wang D, Su DS, Schlögl R (2008) Individual Fe-Co alloy nanoparticles on carbon nanotubes: Structural and catalytic properties. Nano Lett 8(9):2738–2743

    Article  CAS  PubMed  Google Scholar 

  31. Gai SJ, Wang B, Wang XL, Zhang RZ, Miao SL, Wu YQ (2022) Ultrafast NH3 gas sensor based on phthalocyanine-optimized non-covalent hybrid of carbon nanotubes with pyrrole. Sensor Actuat B-Chem 357:131352

    Article  CAS  Google Scholar 

  32. Li BD, Wang C, Yi GQ, Lin HQ, Yuan YZ (2011) Enhanced performance of Ru nanoparticles confined in carbon nanotubes for CO preferential oxidation in a H2-rich stream. Catal Today 164:74–79

    Article  CAS  Google Scholar 

  33. Cao TL, Dai XY, Liu WJ, Fu Y, Qi W (2022) Carbon nanotubes modified by multi-heteroatoms polymer for oxidative dehydrogenation of propane: improvement of propene selectivity and oxidation resistance. Carbon 189:199–209

    Article  CAS  Google Scholar 

  34. González-Muñoz D, Alemán J, Blanco M, Cabrera S (2022) Single walled carbon nanotubes with encapsulated Pt(II) photocatalyst for the oxidation of sulfides in water. J Catal 413:274–283

    Article  Google Scholar 

  35. Haddon RC (1993) Chemistry of the fullerenes-the manifestation of strain in a class of continuous aromatic-molecules. Science 261:1545–1550

    Article  CAS  PubMed  Google Scholar 

  36. Ugarte D, Châtelain A, de Heer WA (1996) Nanocapillarity and chemistry in carbon nanotubes. Science 274:1897–1899

    Article  CAS  PubMed  Google Scholar 

  37. Pan XL, Fan ZL, Chen W, Ding YJ, Luo HY, Bao XH (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511

    Article  CAS  PubMed  Google Scholar 

  38. Li CH, Yao KF, Liang J (2003) Influence of acid treatments on the activity of carbon nanotube-supported catalysts. Carbon 41:858–860

    Article  CAS  Google Scholar 

  39. Satishkumar BC, Govindaraj A, Mofokeng J, Subbanna GN, Rao CNR (1996) Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J Phys B-At Mol Opt Phys 29:4925–4934

    Article  CAS  Google Scholar 

  40. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: Technologies and materials. Renew Sust Energ Rev 58:1189–1206

    Article  Google Scholar 

  41. Nie P, Min CY, Song HJ, Chen XH, Zhang ZZ, Zhao KL (2015) Preparation and tribological properties of polyimide/carboxyl-functionalized multi-walled carbon nanotube nanocomposite films under seawater lubrication. Tribol Lett 58(7):3–12

    Google Scholar 

  42. Yu HF, Xu L, Wang HY, Jiang H, Li CZ (2019) Nanochannel-confined synthesis of Nb2O5/CNTs nanopeapods for ultrastable lithium storage. Electrochim Acta 295:829–834

    Article  CAS  Google Scholar 

  43. Singh NK, Singh SK, Dash D, Gonugunta P, Misra M, Maiti P (2013) CNT induced β-phase in polylactide: unique crystallization, biodegradation, and biocompatibility. J Phys Chem C 117:10163–10174

    Article  CAS  Google Scholar 

  44. Duan Y, Zheng M, Li DM, Deng DS, Ma LF, Yang YL (2017) Conversion of HMF to methyl cyclopentenolone using Pd/Nb2O5 and Ca–Al catalysts via a two-step procedure. Green Chem 19(21):5103–5113

    Article  CAS  Google Scholar 

  45. Gomes GHM, Mohallem NDS (2022) Insights into the TT-Nb2O5 crystal structure behavior. Mater Lett 318:132136

    Article  CAS  Google Scholar 

  46. Tran SBT, Choi H, Oh S, Park JY (2019) Influence of support acidity of Pt/Nb2O5 catalysts on selectivity of CO2 hydrogenation. Catal Lett 149:2823–2835

    Article  CAS  Google Scholar 

  47. Reyhani A, Mortazavi SZ, Akhavan O, Moshfegh AZ, Lahooti S (2007) Effect of Ni, Pd and Ni–Pd nano-islands on morphology and structure of multi-wall carbon nanotubes. Appl Surf Sci 253:8458–8462

    Article  CAS  Google Scholar 

  48. Ghasempour R, Iraji zad A (2009) Hybrid multiwalled carbon nanotubes and trioxide tungsten nanoparticles for hydrogen gas sensing. J Phys D Appl Phys 42:165105

  49. Dutta D, Gope S, Negi DS, Datta R, Sood AK, Bhattacharyya AJ (2016) Pressure-induced capillary encapsulation protocol for ultrahigh loading of sulfur and selenium inside carbon nanotubes: application as high performance cathode in Li-S/Se rechargeable batteries. J Phys Chem C 120:29011–29022

    Article  CAS  Google Scholar 

  50. Alijani H, Kaveh R (2022) Preparation of rGO-CNT/Ag3PO4/Nb2O5 composite with enhanced photoresponse properties as a highly effective visible light driven photocatalyst. J Chem Technol Biotechnol 97:2820–2833

    Article  CAS  Google Scholar 

  51. Jehng JM, Wachs IE (1991) Structcurl chemistry and Raman-spectra of niobium oxides. Chem Mater 3:100–107

    Article  CAS  Google Scholar 

  52. Ma QX, Wang D, Wu MB, Zhao TS, Yoneyama Y, Tsubaki N (2013) Effect of catalytic site position: nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming. Fuel 108:430–438

    Article  CAS  Google Scholar 

  53. Serafin J, Dziejarski B, Cruz Junior OF, Sreńscek-Nazzal J (2023) Design of highly microporous activated carbons based on walnut shell biomass for H2 and CO2 storage. Carbon 201:633–647

    Article  CAS  Google Scholar 

  54. Her SC, Lai CY (2013) Dynamic behavior of nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs). Materials 6:2274–2284

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stobinski L, Lesiak B, Zemek J, Jiricek P, Biniak S, Trykowski G (2010) Studies of oxidized carbon nanotubes in temperature range RT-630 ℃ by the infrared and electron spectroscopies. J Alloy Compd 505:379–384

    Article  CAS  Google Scholar 

  56. Pereira CCM, Lachter ER (2004) Alkylation of toluene and anisole with 1-octen-3-ol over niobium catalysts. Appl Catal A-Gen 266:67–72

    Article  CAS  Google Scholar 

  57. Xue J, Wang RW, Zhang ZT, Qiu SL (2016) Facile preparation of C, N co-modified Nb2O5 nanoneedles with enhanced visible light photocatalytic activity. Dalton Trans 45(41):16519

    Article  CAS  PubMed  Google Scholar 

  58. Goswami T, Kumar S, Bheemaraju A, Reddy KM, Sharma AK, Kataria A et al (2023) TiO2 nanoparticles and Nb2O5 nanorods immobilized rGO for efficient visible-light photocatalysis and catalytic reduction. Catal Letters 153:605–621

    Article  CAS  Google Scholar 

  59. Wang XG, Li QC, Zhang L, Hu ZL, Yu LH, Jiang T et al (2018) Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv Mater 30:1800963

    Article  Google Scholar 

  60. Cheong JY, Kim C, Jung JW, Yoon KR, Cho SH, Youn DY et al (2017) Formation of a surficial bifunctional nanolayer on Nb2O5 for ultrastable electrodes for lithium-ion battery. Small 13(19):1603610

    Article  Google Scholar 

  61. Zhou Y, Liu K, Zhou Y, Ni JH, Dou AC, Su MR et al (2021) Synthesis of a novel hexagonal porous TT-Nb2O5 via solid state reaction for high-performance lithium ion battery anodes. J Cent South Univ 27:3625–3636

    Article  Google Scholar 

  62. Liu YJ, Chen MQ, Su Z, Gao YF, Zhang YY, Long DH (2021) Direct trapping and rapid conversing of polysulfides via a multifunctional Nb2O5-CNT catalytic layer for high performance lithium-sulfur batteries. Carbon 172(28):260–271

    Article  CAS  Google Scholar 

  63. Li MY, He XJ, Zeng YX, Chen MQ, Zhang ZY, Yang H et al (2015) Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production. Chem Sci 6:6799–6805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Song SQ, Zhang Y (2017) Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene-butadiene rubber. Carbon 123:158–167

    Article  CAS  Google Scholar 

  65. Zhan L, Zhou XS, Luo J, Fan XL, Ning XM (2022) Urchin-like Nb2O5/CNT modified separator for lithium-sulfur batteries. Int J Hydrogen Energ 47:27671–27679

    Article  CAS  Google Scholar 

  66. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161

    Article  CAS  Google Scholar 

  67. Ni JF, Wang WC, Wu C, Liang HC, Maier J, Yu Y et al (2017) Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv Mater 29:1605607

    Article  Google Scholar 

  68. Liu H, Gao N, Liao MY, Fang XS (2015) Hexagonal-like Nb2O5 nanoplates-based photodetectors and photocatalyst with high performances. Sci Rep 5:7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li SY, Wang T, Zhu WQ, Lian JB, Huang YP, Yu YY et al (2019) Controllable synthesis of uniform mesoporous H-Nb2O5/rGO nanocomposites for advanced lithium ion hybrid supercapacitors. J Mater Chem A 7:693–703

    Article  Google Scholar 

  70. Farhadian M, Sangpour P, Hosseinzadeh G (2016) Preparation and photocatalytic activity of WO3-MWCNT nanocomposite for degradation of naphthalene under visible light irradiation. RSC Adv 6:39063–39073

    Article  CAS  Google Scholar 

  71. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porpsity. Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  72. Shahsavar H, Taghizadeh M, Kiadehi AD (2021) Effects of catalyst preparation route and promoters (Ce and Zr) on catalytic activity of CuZn/CNTs catalysts for hydrogen production from methanol steam reforming. Int J Hydrogen Energ 46:8906–8921

    Article  CAS  Google Scholar 

  73. Surisetty VR, Tavasoli A, Dalai AK (2009) Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes. Appl Catal A-Gen 365:243–251

    Article  CAS  Google Scholar 

  74. Duarte MP, Silva RCF, Medeiros TPV, Ardisson JD, Cotta AAC, Naccache R et al (2022) Carbon nanotubes derived from waste cooking oil for the removal of emerging contaminants. New J Chem 46:11315–11328

    Article  CAS  Google Scholar 

  75. Taleghani MS, Tabrizi NS, Sangpour P (2022) Enhanced visible-light photocatalytic activity of titanium dioxide doped CNT-C aerogel. Chem Eng Res Des 179:162–174

    Article  Google Scholar 

  76. Niu QT, Jin MM, Liu GD, Lv ZG, Si CD, Han H (2021) Bilayer MOF@MOF and MoOx species functionalization to access prominent stability and selectivity in cascade-selective biphase catalysis. Mol Catal 513:111818

    Article  CAS  Google Scholar 

  77. Yang CY, Yang WY, Ling FX, Fan F (2010) Determination of metal dispersion on supported metal catalyst surface. Chem Ind Eng Prog 29(8):1468–1473

    CAS  Google Scholar 

  78. Kerkhof FPJM, Moulijn JA (1979) Quantitative analysis of XPS intensities for supported catalysts. J Phys Chem 83(12):1612–1619

    Article  CAS  Google Scholar 

  79. Edmonds T, Mitchell PCH (1980) The XPS of some MoO3/Al2O3 catalysts and the distribution of molybdenum in catalyst extrudates following drying and calcining. J Catal 64:491–493

    Article  CAS  Google Scholar 

  80. Ji N, Yin JY, Rong Y, Li HY, Yu ZH, Lei YX et al (2022) More than a support: the unique role of Nb2O5 in supported metal catalysts for lignin hydrodeoxygenation. Catal Sci Technol 12:3751–3766

    Article  CAS  Google Scholar 

  81. Singh N, Kalbande PN, Umbarkar S, Sudarsanam P (2022) Efficient cascade C-N coupling reactions catalyzed by a recyclable MoOx/Nb2O5 nanomaterial for valuable N-heterocycles synthesis. Mol Catal 513:111818

    Google Scholar 

  82. Zhang ZM, Xu H, Li H (2022) Insights into the catalytic performance of Ni/Nb2O5 catalysts for vanillin hydrodeoxygenation in aqueous phase: the role of Nb2O5 crystal structures. Fuel 324:124400

    Article  CAS  Google Scholar 

  83. Gomes GHM, Andrade RR, Mohallem NDS (2021) Investigation of phase transition employing strain mapping in TT- and T-Nb2O5 obtained by HRTEM micrographs. Micron 148:103112

    Article  CAS  PubMed  Google Scholar 

  84. Medeiros FFP, Moura MFV, Silva AGP, Souza CP, Gomes KKP, Gomes UU (2006) The thermal decomposition of monohydrated ammonium oxotris(oxalate) niobate. Braz J Chem Eng 23(4):531–538

    Article  CAS  Google Scholar 

  85. Stošić D, Bennici S, Pavlović V, Rakić V, Auroux A (2014) Tuning the acidity of niobia: Characterization and catalytic activity of Nb2O5–MeO2 (Me = Ti, Zr, Ce) mesoporous mixed oxides. Mater Chem Phys 146:337–345

    Article  Google Scholar 

  86. Ziolek M, Sobczak I, Decyk P, Sobańska K, Pietrzyk P, Sojka Z (2015) Search for reactive intermediates in catalytic oxidation with hydrogen peroxide over amorphous niobium(V) and tantalum(V) oxides. Appl Catal B-Environ 164:288–296

    Article  CAS  Google Scholar 

  87. Zhang JJ, Jiang TT, Mai YL, Wang X, Chen JZ, Liao B (2019) Selective catalytic oxidation of sulfides to sulfoxides or sulfones over amorphous Nb2O5/AC catalysts in aqueous phase at room temperature. Catal Commun 127:10–14

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the development funds of SIT, (XTCX2020-14).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contribution of all the authors, and all authors gave approval to the final version of the manuscript.

Corresponding author

Correspondence to Jun Li.

Ethics declarations

Conflicts of Interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1588 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Shi, Y., Han, Y. et al. Preparation and Characterization of Nb2O5/C-CNT Catalysts for the Selective Oxidation of Cyclopentene to Glutaraldehyde. Catal Lett 154, 3426–3440 (2024). https://doi.org/10.1007/s10562-023-04562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04562-1

Keywords

Navigation