Skip to main content
Log in

SrTiO3–TiO2 Litchi-Like Hollow Nanospheres for Superior Photocatalytic Hydrogen Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

SrTiO3 is a new type of inorganic non-metallic photocatalyst with unique properties, which has excellent performance in the decomposition of water to produce hydrogen. However, the existing SrTiO3-based photocatalysts still have the problems of low light absorption capacity and low electron and hole separation efficiency, resulting in too low hydrogen production efficiency. In order to solve these two problems, a series of SrTiO3–TiO2 hollow structure nanospheres were prepared by in-situ growth of SrTiO3 nanocube crystals on TiO2 solid by hydrothermal method. By controlling the time of hydrothermal reaction to regulate the morphology of hydrothermal reaction products, the hollow structure similar to lychee shell was prepared, so that the incident light could be reflected multiple times inside. Through the hydrothermal of SrTiO3 on the surface of TiO2, to complete the coverage of SrTiO3 on the surface of TiO2 to construct SrTiO3–TiO2 heterojunction, which improves the separation efficiency of photogenerated electrons and holes. The photocatalytic hydrogen production performance of SrTiO3–TiO2 heterojunction is achieved 374.07 μmol ·g−1 ·h−1, and it is 2.35 times higher than pure sample. This work provides a new simple method for preparing high-yield hydrogen photocatalysts and provides a new solution for the conversion of solar energy to hydrogen energy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Ghasemi M, Balar N, Peng ZX, Hu HW, Qin YP, Kim T, Rech JJ, Bidwell M, Mask W, McCulloch I, You W, Amassian A, Risko C, Ade OBT (2021) A molecular interaction–diffusion framework for predicting organic solar cell stability. Nat Mater 20:525–532. https://doi.org/10.1038/s41563-020-00872-6

    Article  CAS  PubMed  Google Scholar 

  2. Wu L, Wang Q, Zhuang TT, Zhang GZ, Li Y, Li HH, Yu FFJ, SH, (2022) A library of polytypic copper-based quaternary sulfide nanocrystals enables efficient solar-to-hydrogen conversion. Nat Commun 13:5414. https://doi.org/10.1038/s41467-022-33065-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang YL, Ding K, Xu R, Yu D, Wang W, Gao P, Liu BJ (2020) Fabrication of BiVO4/BiPO4/GO composite photocatalytic material for the visible light-driven degradation. J Clean Prod 247:119108. https://doi.org/10.1016/j.jclepro.2019.119108

    Article  CAS  Google Scholar 

  4. Yang RX, Zhong S, Zhang LS, Liu BJ (2020) PW12/CN@Bi2WO6 composite photocatalyst prepared based on organic-inorganic hybrid system for removing pollutants in water. Sep Purif Technol 235:116270. https://doi.org/10.1016/j.seppur.2019.116270

    Article  CAS  Google Scholar 

  5. Shan JJ, Raziq F, Humayun M, Zhou W, Qu Y, Wang GF, Li YD (2017) Improved charge separation and surface activation via boron-doped layered polyhedron SrTiO3 for co-catalyst free photocatalytic CO2 conversion. Appl Catal B: Environ 219:10–17. https://doi.org/10.1016/j.apcatb.2017.07.024

    Article  CAS  Google Scholar 

  6. Xu YF, Yan AH, Jiang L, Huang F, Hu DN, Duan GH, Zheng FY (2022) MoS2/HCSs/ZnIn2S4 nanocomposites with enhanced charge transport and photocatalytic hydrogen evolution performance. J Alloys Compd 895:162504. https://doi.org/10.1016/j.jallcom.2021.162504

    Article  CAS  Google Scholar 

  7. Vijay A, Vaidya S (2021) Tuning the Morphology and exposed facets of SrTiO3 nanostructures for photocatalytic dye degradation and hydrogen evolution. ACS Appl Nano Mater 4:3406–3415. https://doi.org/10.1021/acsanm.0c03160

    Article  CAS  Google Scholar 

  8. Jin Y, Jiang DL, Li D, Xiao P, Ma XD, Chen M (2017) SrTiO3 nanoparticle/SnNb2O6 nanosheet 0D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic hydrogen evolution activity. ACS Sustain Chem Eng 5:9749–9757. https://doi.org/10.1021/acssuschemeng.7b01548

    Article  CAS  Google Scholar 

  9. Lei Z, Ma X, Xiaoyun Hu, Fan J, Liu E (2021) Enhancement of photocatalytic H2-evolution kinetics through the dual cocatalyst activity of Ni2P-NiS-decorated g-C3N4 heterojunctions. Acta Physico Chimica Sinica. https://doi.org/10.3866/pku.Whxb202110049

    Article  Google Scholar 

  10. Jin XZ, Shao YL, Zheng Y, Zhang T (2020) Research progress on the modification of strontium titanate photocatalyst. J Mol Catal 34:559–568

    CAS  Google Scholar 

  11. Olagunju MO, Poole X, Blackwelder P, Thomas MP, Guiton BS, Shukla D, Cohn JL, Surnar B, Dhar S, Zahran EM, Bachas LG, Knecht MR (2020) Size-controlled SrTiO3 nanoparticles photodecorated with Pd cocatalysts for photocatalytic organic dye degradation. ACS Appl Nano Mater 3:4904–4912. https://doi.org/10.1021/acsanm.0c01086

    Article  CAS  Google Scholar 

  12. Yang YH, Yan JH, Zhang YX, Xing SS, Ran J, Ma YN, Li XL (2023) S/P co-doped g-C3N4 with secondary calcination for excellent photocatalytic performance. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2023.09.083

    Article  Google Scholar 

  13. Zwara J, Paszkiewicz GM, Łuczak J, Pancielejko A, Lisowski W, Trykowski G, Zaleska MA, Grabowska E (2019) The effect of imidazolium ionic liquid on the morphology of Pt nanoparticles deposited on the surface of SrTiO3 and photoactivity of Pt–SrTiO3 composite in the H2 generation reaction. Int J Hydrog Energy 44:26308–26321. https://doi.org/10.1016/j.ijhydene.2019.08.094

    Article  CAS  Google Scholar 

  14. Ordoñez MF, Cerrato G, Giordana A, Di Michele A, Falletta E, Bianchi CL (2023) One-pot synthesis of Ag-modified SrTiO3: synergistic effect of decoration and doping for highly efficient photocatalytic NOx degradation under LED. J Environ Chem Eng 11:110368. https://doi.org/10.1016/j.jece.2023.110368

    Article  CAS  Google Scholar 

  15. Yl Q, Fang F, Xie ZZ, Lin HW, Zhang K, Yu X, Chang K (2021) La, Al-codoped SrTiO3 as a photocatalyst in overall water splitting: significant surface engineering effects on defect engineering. ACS Catal 11:11429–11439. https://doi.org/10.1021/acscatal.1c02874

    Article  CAS  Google Scholar 

  16. Aravinthkumar K, Anandha babu G, Raja Mohan C (2023) Promoting active sites of Fe3+ ions in SrTiO3 nanosphere: a superior candidate for high performances of dye-sensitized solar cell and Photocatalytic dye degradation. Colloids Surf A: Physicochem Eng Asp 672:131702. https://doi.org/10.1016/j.colsurfa.2023.131702

    Article  CAS  Google Scholar 

  17. Yu H, Wang JJ, Yan SC, Yu T, Zou ZG (2014) Elements doping to expand the light response of SrTiO3. J Photochem Photobiol A: Chem 275:65–71. https://doi.org/10.1016/j.jphotochem.2013.10.014

    Article  CAS  Google Scholar 

  18. Low JX, Yu JG, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction Photocatal 29:1601694. https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  19. Xu X, Chen CC, Shu LX, Cheng C, Tang ZH, Wang YF, Pan L, Guan ZS (2023) Anchoring SrTiO3 nanoparticles on layered ZnIn2S4 to construct S-scheme heterojunctions as novel photocatalysts for efficient degradation of MO dye. FlatChem. 41:100526. https://doi.org/10.1016/j.flatc.2023.100526

    Article  CAS  Google Scholar 

  20. Song YX, Ma WQ, Chen JJ, Xu J, Mao ZY, Wang DJ (2021) Photocatalytic activity of perovskite SrTiO3 catalysts doped with variable rare earth ions. Rare Met 40:1077–1085. https://doi.org/10.1007/s12598-020-01674-0

    Article  CAS  Google Scholar 

  21. Wei XQ, He XH, Wu P, Gong FJ, Wang DQ, Wang SL, Lu SY, Zhang JW, Xiang S, Kai TH, Ding P (2021) Recent advances in the design of semiconductor hollow microspheres for enhanced photocatalyticv water splitting. Int J Hydrog Energy 46:27974–27996. https://doi.org/10.1016/j.ijhydene.2021.06.076

    Article  CAS  Google Scholar 

  22. Xiao M, Wang Z, Lyu M, Luo B, Wang S, Liu G, Cheng HM, Wang L (2019) Hollow nanostructures for photocatalysis: advantages and challenges. Adv Mater 31:1801369. https://doi.org/10.1002/adma.201801369

    Article  CAS  Google Scholar 

  23. Ding Y, Lin Z, Deng JW, Liu YL, Zhang L, Wang KL, Xu SG, Cao SK (2022) Construction of carbon dots modified hollow g-C3N4 spheres via in situ calcination of cyanamide and glucose for highly enhanced visible light photocatalytic hydrogen evolution. Int J Hydrog Energy 47:1568–1578. https://doi.org/10.1016/j.ijhydene.2021.10.108

    Article  CAS  Google Scholar 

  24. Zhang G, Chen D, Li N, Xu Q, Li H, He J, Lu J (2020) Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation. Angewandte Chemie Int Ed 59:8255–8261. https://doi.org/10.1002/anie.202000503

    Article  CAS  Google Scholar 

  25. Wei Y, Wang J, Yu R, Wan J, Wang D (2019) Constructing SrTiO3–TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angewandte Chemie Int Ed 58:1422–1426. https://doi.org/10.1002/anie.201812364

    Article  CAS  Google Scholar 

  26. Chong B, Li H, Xu BR, Yang GD (2022) Hollow double-shell stacked CdS@ZnIn2S4 photocatalyst incorporating spatially separated dual cocatalysts for the enhanced photocatalytic hydrogen evolution and hydrogen peroxide production. Catal Today 405–406:227–234. https://doi.org/10.1016/j.cattod.2022.05.020

    Article  CAS  Google Scholar 

  27. Feng J, Yin Y (2019) Self-Templating approaches to hollow nanostructures. Adv Mater 31:1802349. https://doi.org/10.1002/adma.201802349

    Article  CAS  Google Scholar 

  28. Wang Y, Wang SB, Lou XW (2019) Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction. Angewandte Chemie Int Ed 58:17236–17240. https://doi.org/10.1002/anie.201909707

    Article  CAS  Google Scholar 

  29. Li XL, Song SJ, Gao YQ, Ge L, Song WY, Ma TY, Liu J (2021) Identification of the charge transfer channel in cobalt encapsulated hollow nitrogen-doped carbon Matrix@CdS heterostructure for photocatalytic hydrogen evolution. Small 17:2101315. https://doi.org/10.1002/smll.202101315

    Article  CAS  Google Scholar 

  30. Li YL, Wang XJ, Hao JY, Zhao J, Liu Y, Mu HJ, Li FT (2021) Rational design of stratified material with spatially separated catalytic sites as an efficient overall water-splitting photocatalyst. Chin J Catal 42:1040–1050. https://doi.org/10.1016/s1872-2067(20)63706-8

    Article  CAS  Google Scholar 

  31. Yang RX, Zhu ZJ, Hu CY, Zhong S, Zhang LS, Liu BJ, Wang W (2020) One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chem Eng J 390:124522. https://doi.org/10.1016/j.cej.2020.124522

    Article  CAS  Google Scholar 

  32. Sun LJ, Su HW, Xu DF, Wang LL, Tang H, Liu QQ (2022) Carbon hollow spheres as cocatalyst of Cu-doped TiO2 nanoparticles for improved photocatalytic H2 generation. Rare Met 41:2063–2073. https://doi.org/10.1007/s12598-021-01936-5

    Article  CAS  Google Scholar 

  33. Kanagaraj T, Thiripuranthagan S (2017) Photocatalytic activities of novel SrTiO3–BiOBr heterojunction catalysts towards the degradation of reactive dyes. Appl Catal B: Environ 207:218–232. https://doi.org/10.1016/j.apcatb.2017.01.084

    Article  CAS  Google Scholar 

  34. Li CQ, Yi SS, Liu Y, Niu ZL, Yue XZ, Liu ZY (2021) In-situ constructing S-scheme/Schottky junction and oxygen vacancy on SrTiO3 to steer charge transfer for boosted photocatalytic H2 evolution. Chem Eng J 417:129231. https://doi.org/10.1016/j.cej.2021.129231

    Article  CAS  Google Scholar 

  35. Li XR, Ge ZC, Xue F, Liu H, Lyu B, Liu MC (2020) Lattice-oriented contact in Pd/SrTiO3 heterojunction for rapid electron transfer during photocatalytic H2 production. Mater Res Bullet 123:110722. https://doi.org/10.1016/j.materresbull.2019.110722

    Article  CAS  Google Scholar 

  36. Zeng B, Wang SY, Feng ZD, Xiao YJ, Li MR, Hong F, Zhao Y, Feng ZC, Li RG, Li C (2022) Atomically unraveling the dependence of surface microstructure on plasmon-induced hydrogen evolution on Au/SrTiO3. Nano Energy 91:106638. https://doi.org/10.1016/j.nanoen.2021.106638

    Article  CAS  Google Scholar 

  37. Jiang SY, Zhao K, Al-Mamun M, Zhong YL, Liu P, Yin HJ, Jiang LX, Lowe S, Qi J, Yu RB, Wang D, Zhao HJ (2019) Design of three-dimensional hierarchical TiO2/SrTiO3 heterostructures towards selective CO2 photoreduction. Inorg Chem Front 6:1667–1674. https://doi.org/10.1039/c9qi00350a

    Article  CAS  Google Scholar 

  38. He Y, Wang P, Zhu J, Yang Y, Liu Y, Chen M, Cao D, Yan X (2019) Synergistical dual strategies based on in situ-converted heterojunction and reduction-induced surface oxygen vacancy for enhanced photoelectrochemical performance of TiO2. ACS Appl Mater Interfaces 11:37322–37329. https://doi.org/10.1021/acsami.9b12537

    Article  CAS  PubMed  Google Scholar 

  39. Łęcki T, Zarębska K, Sobczak K, Skompska M (2019) Photocatalytic degradation of 4-chlorophenol with the use of FTO/TiO2/SrTiO3 composite prepared by microwave-assisted hydrothermal method. Appl Surf Sci 470:991–1002. https://doi.org/10.1016/j.apsusc.2018.11.200

    Article  CAS  Google Scholar 

  40. Li JY, Hu CY, Liu BJ, Liu ZF (2023) Dual pathway reduction of Mo4+ and photogenerated electrons restore catalytic sites to enhance heterogeneous peroxymonosulfate activation system. Chem Eng J 452:139246. https://doi.org/10.1016/j.cej.2022.139246

    Article  CAS  Google Scholar 

  41. Zhang B, Hu XY, Liu EZ, Fan J (2021) Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity. Chin J Catal 42:1519–1529. https://doi.org/10.1016/s1872-2067(20)63765-2

    Article  CAS  Google Scholar 

  42. Xue W, Sun H, Xiaoyun H, Bai X, Fan J, Liu E (2022) UV-–IS-NIR-induced extraordinary H2 evolution over W18O49/Cd0.5Zn0.5S: surface plasmon effect coupled with S-scheme charge transfer. Chin J Catal 43:234–245. https://doi.org/10.1016/S1872-2067(20)63783-4

    Article  CAS  Google Scholar 

  43. Li Y, Yang YL, Chen G, Fan JJ, Xiang QJ (2022) Au cluster anchored on TiO2/Ti3C2 hybrid composites for efficient photocatalytic CO2 reduction. Rare Met 41:3045–3059. https://doi.org/10.1007/s12598-022-02007-z

    Article  CAS  Google Scholar 

  44. Qiu JY, Feng HZ, Chen ZH, Ruan SH, Chen YP, Xu TT, Su JY, Ha EN, Wang LY (2022) Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation. Rare Met 41:2074–2083. https://doi.org/10.1007/s12598-021-01929-4

    Article  CAS  Google Scholar 

  45. Zhang SC, Liu JX, Han YX, Chen BC, Li XG (2004) Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions. Mater Sci Eng: B 110:11–17. https://doi.org/10.1016/j.mseb.2004.01.017

    Article  CAS  Google Scholar 

  46. Hu CG, Tai CQ, Zhang WC, Lu QF, Wei MZ, Si CH, Guo EY, Pang YP (2023) Plasmonic Au functionalized 3D SrTiO3/TiO2 hollow nanosphere enables efficient solar water splitting. J Alloys Compd 930:167449. https://doi.org/10.1016/j.jallcom.2022.167449

    Article  CAS  Google Scholar 

  47. Lv XC, Lam FL, Hu XJ (2022) Developing SrTiO3/TiO2 heterostructure nanotube array for photocatalytic fuel cells with improved efficiency and elucidating the effects of organic substrates. Chem Eng J 427:131602. https://doi.org/10.1016/j.cej.2021.131602

    Article  CAS  Google Scholar 

  48. Nina A, Thomas JP, Michael B (1994) Adsorption and Decomposition of Methanol on TiO, SrTiO, and SrO. J Chem Soc Faraday Trans 90:1015–1022

    Article  Google Scholar 

  49. Han K, Li WJ, Ren CJ, Li HD, Liu XT, Li XY, Ma XH, Liu H, Khan A (2020) Dye-sensitized SrTiO3-based photocatalysts for highly efficient photocatalytic hydrogen evolution under visible light. J Taiwan Instit Chem Eng 112:4–14. https://doi.org/10.1016/j.jtice.2020.07.014

    Article  CAS  Google Scholar 

  50. Tan PF, Zhu AQ, Liu Y, Ma YJ, Liu WW, Cui H, Pan J (2018) Insights into the efficient charge separation and transfer efficiency of La, Cr-codoped SrTiO3 modified with CoP as a noble-metal-free co-catalyst for superior visible-light driven photocatalytic hydrogen generation. Inorg Chem Front 5:679–686. https://doi.org/10.1039/c7qi00769h

    Article  CAS  Google Scholar 

  51. Saadetnejad D, Yıldırım R (2018) Photocatalytic hydrogen production by water splitting over Au/Al-SrTiO3. Int J Hydrog Energy 43:1116–1122. https://doi.org/10.1016/j.ijhydene.2017.10.154

    Article  CAS  Google Scholar 

  52. Hu Q, Niu J, Zhang KQ, Yao M (2022) Fabrication of Mn-doped SrTiO3/carbon fiber with oxygen vacancy for enhanced photocatalytic hydrogen evolution. Materials (Basel) 15:4723–4738. https://doi.org/10.3390/ma15134723

    Article  CAS  PubMed  Google Scholar 

  53. Rusevich LL, Kotomin EA, Zvejnieks G, Kržmanc M, Gupta S, Daneu N, Wu J, Lee YG, Yu WY (2022) Effects of Al doping on hydrogen production efficiency upon photostimulated water splitting on SrTiO3 Nanoparticles. J Phys Chem C 126:21223–21233. https://doi.org/10.1021/acs.jpcc.2c05993

    Article  CAS  Google Scholar 

  54. He Y, Huang J, Wang BS, Qu Y (2023) Construction of Z-scheme heterojunction C3N4/N-CQDs@W18O49 for full-spectrum photocatalytic organic pollutant degradation. Appl Surf Sci 610:155255. https://doi.org/10.1016/j.apsusc.2022.155255

    Article  CAS  Google Scholar 

  55. Li X, Yu JG, Low JX, Fang YP, Chen XJ, XB, (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534. https://doi.org/10.1039/c4ta04461d

    Article  CAS  Google Scholar 

  56. Lee JT, Chen YJ, Su EC, Wey MY (2019) Synthesis of solar-light responsive Pt/g-C3N4/SrTiO3 composite for improved hydrogen production: investigation of Pt/g-C3N4/SrTiO3 synthetic sequences. Int J Hydrog Energy 44:21413–21423. https://doi.org/10.1016/j.ijhydene.2019.06.178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Basic Research Program of Shaanxi Province (2021JQ-533) and National Natural Science Foundation of China (22008147 and 22208199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, Y., Wang, T. et al. SrTiO3–TiO2 Litchi-Like Hollow Nanospheres for Superior Photocatalytic Hydrogen Production. Catal Lett 154, 2537–2550 (2024). https://doi.org/10.1007/s10562-023-04543-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04543-4

Keywords

Navigation