Skip to main content
Log in

Enhanced Catalytic Performance and Poison Resistance of Cu–Mn–Ce Ternary Mixed Oxide for Chlorobenzene Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cu–Mn–Ce ternary mixed oxides, prepared via the citric acid complex method and supported on cordierite, were investigated for their catalytic activity in the oxidation of chlorobenzene. The impact of various reaction conditions, including chlorobenzene concentration, GHSV, water vapor and HCl, was thoroughly investigated to analyze oxidative activity, stability, and anti-poisoning ability. Among the catalysts tested, those with 20 wt% CuMnOx and 10 wt% CeO2, calcined at 450 °C for 4 h with one step, exhibited the highest apparent activity with T90 < 300 °C in the feed containing 500ppm chlorobenzene at a space velocity of 10,000 h−1. Notably, Cu–Mn–Ce–O exhibited a stable and effective catalyst performance for the oxidation of chlorinated aromatics under low water vapor (< 5%) and HCl (2%) concentrations. Further insights into the oxidation process were gained via in-situ FTIR spectroscopy and GC–MS analysis. The exceptional performance of Cu–Mn–Ce–O was attributed to the incorporation of CeO2, resulting in a lower H2 reduction peak, smaller particle size, abundant surface active oxygen, and a higher specific surface area. To understand the reaction mechanism, the relationship between inlet and outlet gas compounds and the reaction temperature over Cu–Mn–Ce–O was studied, revealing the presence of NO/NOx during the reaction at temperature up to 300 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gu YF, Cai T, Gao XH, Xia HQ, Sun W, Zhao J, Dai QG, Wang XY (2019) Catalytic combustion of chlorinated aromatics over WOX/CeO2 catalysts at low temperature. Appl Catal B 248:264–276. https://doi.org/10.1016/j.apcatb.2018.12.055

    Article  CAS  Google Scholar 

  2. Liu XL, Chen L, Zhu TY, Ning RL (2019) Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products. J Hazard Mater 363:90–98. https://doi.org/10.1016/j.jhazmat.2018.09.074

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Hu M, Zuo S, Wang X (2018) Catalytic combustion of volatile organic compounds on pillared interlayered clay (PILC)-based catalysts. Curr Opin Chem Eng 20:93–98. https://doi.org/10.1016/j.coche.2018.02.001

    Article  Google Scholar 

  4. Meng J, Fu YX, Chen SH, Zhang HY, Li Z, Wang XR, Luo J, Zhou Y, Luo SP, Qin HF (2023) Hollow zeolite-based V-Cu bimetallic oxide catalyst for remarkable catalytic oxidation of chlorobenzene. Sep Purif Technol 326:124775. https://doi.org/10.1016/j.seppur.2023.124775

    Article  CAS  Google Scholar 

  5. Wang Y, Wu J, Wang G, Yang DY, Ishihara T, Guo LM (2021) Oxygen vacancy engineering in Fe doped akhtenskite-type MnO2 for low-temperature toluene oxidation. Appl Catal B 285:119873–119889. https://doi.org/10.1016/j.apcatb.2020.119873

    Article  CAS  Google Scholar 

  6. Qin LB, Zhao B, Chen WS, Han YX, Wan Y, Liu L, Lu HJ, Han J (2022) Simultaneous removal of toluene and chlorobenzene in a nonthermal plasma-catalysis reactor packed with Fe1-Mn1/γ-Al2O3. J Clean Prod 363:132611–212626. https://doi.org/10.1016/j.jclepro.2022.132611

    Article  CAS  Google Scholar 

  7. Tian J, Wei JY, Liang YP, Guo RX, Li BB, Qu RJ, Zhou DM, Wang ZY, Sun P (2022) Catalytic ozonation of an imidazole ionic liquid via Fe3O4/ZnO nanocomposites: performance, products and reaction mechanism. J Clean Prod 10:108726–108737. https://doi.org/10.1016/j.jece.2022.108726

    Article  CAS  Google Scholar 

  8. He C, Xu BT, Shi JW, Qiao NL, Hao ZP, Zhao JL (2015) Catalytic destruction of chlorobenzene over mesoporous ACeOX (A = Co, Cu, Fe, Mn, or Zr) composites prepared by inorganic metal precursor spontaneous precipitation. Fuel Process Technol 130:179–187. https://doi.org/10.1016/j.fuproc.2014.10.008

    Article  CAS  Google Scholar 

  9. Wang XW, Jiang WY, Yin RQ, Sun PF, Lu YH, Wu ZB, Weng XL (2020) The role of surface sulfation in mediating the acidity and oxidation ability of nickel modified ceria catalyst for the catalytic elimination of chlorinated organics. J Colloid Interface Sci 574:251–259. https://doi.org/10.1016/j.jcis.2020.04.047

    Article  CAS  PubMed  Google Scholar 

  10. Xiang Y, Zhu Y, Lu J, Zhu CZ, Zhu MG, Xie QQ, Chen TH (2019) Co3O4/α-Fe2O3 catalyzed oxidative degradation of gaseous benzene: preparation, characterization and its catalytic properties. Solid State Sci 93:76–86. https://doi.org/10.1016/j.solidstatesciences.2019.05.008

    Article  CAS  Google Scholar 

  11. Zhou ZW, Li QQ, Su GJ, Pang JX, Sun BH, Meng J, Shi B (2024) Catalytic degradation of chlorinated volatile organic compounds (CVOCs) over Ce-Mn-Ti composite oxide catalysts. J Environ Sci 138:326–338. https://doi.org/10.1016/j.jes.2023.03.019

    Article  Google Scholar 

  12. Chen T, Wang R, Sun C, Kong DB, Lu SY, Li XD (2022) Metal-organic frameworks templated micropore-enriched defective MnCeOX for low temperature chlorobenzene oxidation. Appl Catal A 645:118845. https://doi.org/10.1016/j.apcata.2022.118845

    Article  CAS  Google Scholar 

  13. Li L, Shi JW, Tian MJ, Chen CW, Wang BR, Ma MD, He C (2021) In situ fabrication of robust three dimensional ordered macroporous γ-MnO2/LaMnO3.15 catalyst for chlorobenzene efficient destruction. Appl Catal B 282:119565. https://doi.org/10.1016/j.apcatb.2020.119565

    Article  CAS  Google Scholar 

  14. Dai QG, Yin LL, Bai SX, Wang W, Wang XY, Gong XQ, Lu GZ (2016) Catalytic total oxidation of 1,2-dichloroethane over VOX/CeO2 catalysts: further insights via isotopic tracer techniques. Appl Catal B 182:598–610. https://doi.org/10.1016/j.apcatb.2015.10.016

    Article  CAS  Google Scholar 

  15. Huang H, Gu Y, Zhao J, Wang XY (2015) Catalytic combustion of chlorobenzene over VOX/CeO2 catalysts. J Catal 326:54–68. https://doi.org/10.1016/j.jcat.2015.02.016

    Article  CAS  Google Scholar 

  16. Zhou H, Wu QW, Cheng FZ (2019) Catalytic oxidation of CO by La0.8Sr0.2Mn1-xCuXO3 by flame spray synthesis. J Chem Eng 72(10):5159–5171. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=HGSZ202110018&DbName=CJFQ2021

  17. Kang N, Lin J, Lu SX, Zhao ZQ, Yu XY (2023) Inhibition of CO oxidation over Cu-Mn-Ce-O composite catalyst in the presence of dry powder fire extinguishing agent: mechanism investigation and mitigation strategy. Appl Catal A 664:119343. https://doi.org/10.1016/j.apcata.2023.119343

    Article  CAS  Google Scholar 

  18. Zhang HY, Sui SH, Zheng XM, Cao RR, Zhang PY (2019) One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Appl Catal B 257:117878–117879. https://doi.org/10.1016/j.apcatb.2019.117878

    Article  CAS  Google Scholar 

  19. Wang Y, Wang G, Deng W, Han J, Qin LB, Zhao B, Guo LM, Xing FT (2020) Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion. Chem Eng J 395:125172–125185. https://doi.org/10.1016/j.cej.2020.125172

    Article  CAS  Google Scholar 

  20. Wang Y, Deng W, Wang YF, Guo LM, Ishihara T (2018) A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides. Mol Catal 459:61–70. https://doi.org/10.1016/j.mcat.2018.08.022

    Article  CAS  Google Scholar 

  21. Yang WH, Su ZA, Xu ZH, Yang WN, Peng Y, Li JH (2020) Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates. Appl Catal B 260:118150–118184. https://doi.org/10.1016/j.apcatb.2019.118150

    Article  CAS  Google Scholar 

  22. Lu SH, Li KL, Huang FL, Chen CC, Sun B (2017) Efficient MnOX-Co3O4-CeO2 catalysts for formaldehyde elimination. Appl Surf Sci 400:277–282. https://doi.org/10.1016/j.apsusc.2016.12.207

    Article  CAS  Google Scholar 

  23. Yang S, Zhao HJ, Dong F, Zha F, Tang ZC (2019) Highly efficient catalytic combustion of o-dichlorobenzene over three-dimensional ordered mesoporous cerium manganese bimetallic oxides: a new concept of chlorine removal mechanism. Mol Catal 463:119–129. https://doi.org/10.1016/j.mcat.2018.12.006

    Article  CAS  Google Scholar 

  24. He C, Yu YK, Shen Q, Chen JS, Qiao NL (2014) Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOX-CeO2 catalysts for chlorobenzene destruction. Appl Surf Sci 297:59–69. https://doi.org/10.1016/j.apsusc.2014.01.076

    Article  CAS  Google Scholar 

  25. Wang XY, Ran L, Dai Y, Lu YJ, Dai QG (2014) Removal of Cl adsorbed on Mn–Ce–La solid solution catalysts during CVOC combustion. J Colloid Interface Sci 426:324–332. https://doi.org/10.1016/j.jcis.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  26. Dai QG, Wu JY, Deng W, Hu JS, Wu QQ, Guo LM, Sun W, Zhan WC, Wang XY (2019) Comparative studies of P/CeO2 and Ru/CeO2 catalysts for catalytic combustion of dichloromethane: from effects of H2O to distribution of chlorinated by-products. Appl Catal B 249:9–18. https://doi.org/10.1016/j.apcatb.2019.02.065

    Article  CAS  Google Scholar 

  27. Yu XH, Dai LY, Deng JG, Liu YX, Jing L, Zhang X, Gao RY, Hou ZQ, Wei L, Dai HX (2022) An isotopic strategy to investigate the role of water vapor in the oxidation of 1,2-dichloroethane over the Ru/WO3 or Ru/TiO2 catalyst. Appl Catal B 305:121037. https://doi.org/10.1016/j.apcatb.2021.121037

    Article  CAS  Google Scholar 

  28. Chen L, Si ZC, Wu XD, Weng D, Wu ZW (2015) Effect of water vapor on NH3–NO/NO2 SCR performance of fresh and aged MnOX–NbOX–CeO2 catalysts. J Environ Sci 31:240–247. https://doi.org/10.1016/j.jes.2014.07.037

    Article  CAS  Google Scholar 

  29. Song ZJ, Yu SX, Liu H, Wang Y, Gao CY, Wang ZS, Qin YM, Peng Y, Li JH (2022) Carbon/chlorinate deposition on MnOX-CeO2 catalyst in chlorobenzene combustion: the effect of SCR flue gas. Chem Eng J 433:133552. https://doi.org/10.1016/j.cej.2021.133552

    Article  CAS  Google Scholar 

  30. Jin QJ, Xu MT, Lu Y, Yang B, Ji WY, Xue ZW, Dai Y, Wang Y, Shen YS, Xu HT (2022) Simultaneous catalytic removal of NO, mercury and chlorobenzene over WCeMnOX/TiO2–ZrO2: performance study of microscopic morphology and phase composition. Chemosphere 295:133794–133812. https://doi.org/10.1016/j.chemosphere.2022.133794

    Article  CAS  PubMed  Google Scholar 

  31. Sun PF, Wang WL, Dai XX, Weng XL, Wu ZB (2016) Mechanism study on catalytic oxidation of chlorobenzene over MnXCe1-xO2/H-ZSM5 catalysts under dry and humid conditions. Appl Catal B 198:389–397. https://doi.org/10.1016/j.apcatb.2016.05.076

    Article  CAS  Google Scholar 

  32. He C, Yu YK, Shi JW, Shen Q, Chen JS, Liu HX (2015) Mesostructured Cu-Mn-Ce-O composites with homogeneous bulk composition for chlorobenzene removal: catalytic performance and microactivation course. Mater Chem Phys 157:87–100. https://doi.org/10.1016/j.matchemphys.2015.03.020

    Article  CAS  Google Scholar 

  33. Yan X, Zhao LK, Huang Y, Zhang JF, Jiang S (2023) Three-dimensional porous CuO-modified CeO2-Al2O3 catalysts with chlorine resistance for simultaneous catalytic oxidation of chlorobenzene and mercury: Cu-Ce interaction and structure. J Hazard Mater 455:131585. https://doi.org/10.1016/j.jhazmat.2023.131585

    Article  CAS  PubMed  Google Scholar 

  34. Wu SX, Wu SL, Dong F, Xi YT, Wang P, Chu YH, Tang ZC, Zhang JY (2024) Elucidating the nature role of acid etching on the CoMnOX catalyst with outstanding performance for the catalytic combustion of o-dichlorobenzene. Appl Catal B 342:123390. https://doi.org/10.1016/j.apcatb.2023.123390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Science Foundation of Jiangsu Province (No. BK20170954, BK20150890 and BK20190786), the National Natural Science Foundation of China (No. 21501097, 51902166), the Qing Lan Project of the Jiangsu Higher Education Institutions and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and NUIST-Reading Research Institute Pump-Priming Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiong Huang or Hong Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gu, My., An, Gf. et al. Enhanced Catalytic Performance and Poison Resistance of Cu–Mn–Ce Ternary Mixed Oxide for Chlorobenzene Oxidation. Catal Lett 154, 2866–2877 (2024). https://doi.org/10.1007/s10562-023-04511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04511-y

Keywords

Navigation