Skip to main content
Log in

Copper(II) Schiff Base Complex Immobilized on Magnetic-Fe3O4 Nanoparticles for Selective Oxidation of Anthracene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel heterogeneous catalyst Fe3O4@SB@Cu that contains a copper(II) Schiff base complex covalently immobilised on Fe3O4 nanoparticles was synthesised. The prepared catalyst is well characterised by FTIR spectroscopy, UV–Visible spectroscopy, FE-SEM, TEM, VSM analysis, EDX, XRD analysis, TGA, CV technique, XPS and PL studies to confirm its structural and morphological features. The high BET surface area (117.34 m2/g) was achieved for particles with size 25–30 nm and saturation magnetisation of 43.4 emu/g. The catalytic potential of the synthesised catalyst Fe3O4@SB@Cu was investigated by employing H2O2 as an oxidant for the oxidation of anthracene to anthraquinone. Various parameters like catalytic loading, temperature and solvents were varied to determine the optimal catalytic conditions, and 96% yield of the product is obtained within 36 min when the reaction was performed in the acetonitrile solvent with 1.8% loading of the catalyst. The catalytic reaction was monitored by UV–Visible spectroscopy. Using an external magnet, the modified nanoparticles were easily retrieved from the reaction mixture and can be utilised for five more reaction cycles without the significant loss of activity or copper leaching.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Taboonpong P, Chavasiri W (2018) CuCl2/[hmim]Br: a new recyclable catalytic system for aromatization of cyclic dienes. Catal Commun 104:9–12. https://doi.org/10.1016/j.catcom.2017.10.009

    Article  CAS  Google Scholar 

  2. Kim H, il, Choi Y, Hu S, et al (2018) Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Appl Catal B 229:121–129. https://doi.org/10.1016/j.apcatb.2018.01.060

    Article  CAS  Google Scholar 

  3. Rodríguez-Gómez A, Platero F, Caballero A, Colón G (2018) Improving the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Au-Pd/SBA-15 catalysts by selective functionalization. Mol Catal 445:142–151. https://doi.org/10.1016/j.mcat.2017.10.034

    Article  CAS  Google Scholar 

  4. Bai H, Fang X, Peng C (2019) Novel working solvent for the production of hydrogen peroxide. Ind Eng Chem Res 58:6948–6956. https://doi.org/10.1021/acs.iecr.9b01130

    Article  CAS  Google Scholar 

  5. Guo Y, Dai C, Lei Z et al (2016) Synthesis of hydrogen peroxide over Pd/SiO2/COR monolith catalysts by anthraquinone method. Catal Today 276:36–45. https://doi.org/10.1016/j.cattod.2016.03.023

    Article  CAS  Google Scholar 

  6. Lai IC, Lee CL, Zeng KY, Huang HC (2011) Seasonal variation of atmospheric polycyclic aromatic hydrocarbons along the Kaohsiung coast. J Environ Manage 92:2029–2037. https://doi.org/10.1016/j.jenvman.2011.03.026

    Article  CAS  PubMed  Google Scholar 

  7. Alwi RS, Tamura K (2015) Measurement and correlation of derivatized anthraquinone solubility in supercritical carbon dioxide. J Chem Eng Data 60:3046–3052. https://doi.org/10.1021/acs.jced.5b00480

    Article  CAS  Google Scholar 

  8. Shayanfar A, Eghrary SH, Sardari F et al (2011) Solubility of anthracene and phenanthrene in ethanol + 2,2,4- trimethylpentane mixtures at different temperatures. J Chem Eng Data 56:2290–2294. https://doi.org/10.1021/je101272u

    Article  CAS  Google Scholar 

  9. Lu Z, He F, Hsieh CY et al (2019) Magnetic hierarchical photocatalytic nanoreactors: toward highly selective Cd2+ removal with secondary pollution free tetracycline degradation. ACS Appl Nano Mater 2:1664–1674. https://doi.org/10.1021/acsanm.9b00113

    Article  CAS  Google Scholar 

  10. Li C, Hui B, Ye L (2018) Construction of polyurethane-imide/graphene oxide nanocomposite foam with gradient structure and its thermal mechanical stability. Ind Eng Chem Res 57:13742–13752. https://doi.org/10.1021/acs.iecr.8b02911

    Article  CAS  Google Scholar 

  11. Roostaee M, Sheikhshoaie I (2020) Magnetic nanoparticles; synthesis, properties and electrochemical application: a review. Curr Biochem Eng 6:91–102. https://doi.org/10.2174/2212711906666200316163207

    Article  Google Scholar 

  12. Nasrollahzadeh M, Issaabadi Z, Safari R (2019) Synthesis, characterization and application of Fe3O4@SiO2 nanoparticles supported palladium(II) complex as a magnetically catalyst for the reduction of 2,4-dinitrophenylhydrazine, 4-nitrophenol and chromium(VI): a combined theoretical (DFT) and experiment. Sep Purif Technol 209:136–144. https://doi.org/10.1016/j.seppur.2018.07.022

    Article  CAS  Google Scholar 

  13. Yin SJ, Zhao CP, Jiang H et al (2021) Preparation of amino-functionalized covalent organic framework modified Fe3O4 nanoparticles for the selective enrichment of flavonoid glycosides. Microchem J 164:105990. https://doi.org/10.1016/j.microc.2021.105990

    Article  CAS  Google Scholar 

  14. Koo KN, Ismail AF, Othman MHD et al (2019) Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: a short review. Mal J Fund Appl Sci 15:23–31. https://doi.org/10.11113/mjfas.v15n2019.1224

    Article  Google Scholar 

  15. Maleki H, Rakhtshah J, Shaabani B (2020) Effective one-pot synthesis of tetrahydrobenzo[b]pyran derivatives using nickel Schiff-base complex immobilized on iron oxide nanoparticles. Appl Organomet Chem 34:1–15. https://doi.org/10.1002/aoc.5683

    Article  CAS  Google Scholar 

  16. Bezaatpour A, Payami F, Eskandari H (2017) Green, inexpensive, and fast conversion of sulfides to sulfoxides by multiusable Mo(VI) macrocyclic Schiff base complex supported on Fe3O4 nanoparticles in solvent-free conditions. C R Chim 20:910–920. https://doi.org/10.1016/j.crci.2017.07.004

    Article  CAS  Google Scholar 

  17. Eshaghi Malekshah R, Fahimirad B, Aallaei M, Khaleghian A (2020) Synthesis and toxicity assessment of Fe3O4 NPs grafted by ∼ NH2-Schiff base as anticancer drug: modeling and proposed molecular mechanism through docking and molecular dynamic simulation. Drug Deliv 27:1201–1217. https://doi.org/10.1080/10717544.2020.1801890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reghioua A, Barkat D, Jawad AH et al (2021) Synthesis of Schiff’s base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: modeling and mechanism study. Sustain Chem Pharm 20:100379. https://doi.org/10.1016/j.scp.2021.100379

    Article  CAS  Google Scholar 

  19. Zhao J, Niu Y, Ren B et al (2018) Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(II) and Cd(II) from aqueous solution. Chem Eng J 347:574–584. https://doi.org/10.1016/j.cej.2018.04.151

    Article  CAS  Google Scholar 

  20. Kapila A, Kaur M, Kaur H (2020) Materials today : proceedings organotin (IV) complexes of tridentate (O, N, O) Schiff base ligand : computational, spectroscopic and biological studies. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.04.080

    Article  Google Scholar 

  21. Sidana N, Kaur M, Kaur H, Devi P (2020) Pyrrole-based Schiff-base sensor for copper ions. ChemistrySelect. https://doi.org/10.1002/slct.202003701

    Article  Google Scholar 

  22. More MS, Joshi PG, Mishra YK, Khanna PK (2019) Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Mater Today Chem 14:100195. https://doi.org/10.1016/j.mtchem.2019.100195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Al Zoubi W, Al-Hamdani AAS, Kaseem M (2016) Synthesis and antioxidant activities of Schiff bases and their complexes: a review. Appl Organomet Chem 30:810–817. https://doi.org/10.1002/aoc.3506

    Article  CAS  Google Scholar 

  24. Salih KSM, Shraim AM, Al-Mhini SR et al (2021) New tetradentate Schiff base Cu(II) complexes: synthesis, physicochemical, chromotropism, fluorescence, thermal, and selective catalytic oxidation. Emergent Mater 4:423–434. https://doi.org/10.1007/s42247-021-00183-9

    Article  CAS  Google Scholar 

  25. Kaur M, Sahoo SC, Kaur H (2020) New Schiff base as selective and sensitive detection of copper ions in aqueous solvent. ChemistrySelect. https://doi.org/10.1002/slct.202003880

    Article  Google Scholar 

  26. Iftikhar B, Javed K, Khan MSU et al (2018) Synthesis, characterization and biological assay of salicylaldehyde Schiff base Cu(II) complexes and their precursors. J Mol Struct 1155:337–348. https://doi.org/10.1016/j.molstruc.2017.11.022

    Article  CAS  Google Scholar 

  27. Silva TFS, Martins LMDRS (2020) Recent advances in copper catalyzed alcohol oxidation in homogeneous medium. Molecules 25:1–15. https://doi.org/10.3390/molecules25030748

    Article  CAS  Google Scholar 

  28. Thabet RH, Tony MA, El Sherbiny SA et al (2020) Catalytic oxidation over nanostructured heterogeneous process as an effective tool for environmental remediation. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/975/1/012004

    Article  Google Scholar 

  29. Adam MSS, Al-Omair MA (2020) Nanocomposite-based inorganic-organocatalyst Cu(II) complex and SiO2- and Fe3O4 nanoparticles as low-cost and efficient catalysts for aniline and 2-aminopyridine oxidation. Appl Organomet Chem 34:1–22. https://doi.org/10.1002/aoc.5999

    Article  CAS  Google Scholar 

  30. Veisi H, Rashtiani A, Rostami A et al (2019) Chemo-selective oxidation of sulfide to sulfoxides with H2O2 catalyzed by oxo-vanadium/Schiff-base complex immobilized on modified magnetic Fe3O4 nanoparticles as a heterogeneous and recyclable nanocatalyst. Polyhedron 157:358–366. https://doi.org/10.1016/j.poly.2018.09.034

    Article  CAS  Google Scholar 

  31. Bhat PB, Bhat BR (2015) Nano Fe3O4@APTES@Ni(OH)2 as a catalyst for alcohol oxidation. New J Chem 39:273–278. https://doi.org/10.1039/c4nj01649a

    Article  CAS  Google Scholar 

  32. Wang L, Shen C, Cao Y (2019) PVP modified Fe3O4@SiO2 nanoparticles as a new adsorbent for hydrophobic substances. J Phys Chem Solids 133:28–34. https://doi.org/10.1016/j.jpcs.2019.05.004

    Article  CAS  Google Scholar 

  33. Mahmoudi-GomYek S, Azarifar D, Ghaemi M et al (2019) Fe3O4-supported Schiff-base copper (II) complex: a valuable heterogeneous nanocatalyst for one-pot synthesis of new pyrano[2,3-b]pyridine-3-carboxamide derivatives. Appl Organomet Chem 33:1–14. https://doi.org/10.1002/aoc.4918

    Article  CAS  Google Scholar 

  34. Kaur M, Kumar P, Gupta A et al (2021) Sn coated Fe3O4 nanoparticles for selective and efficient oxidation of anthracene to anthraquinone. Mater Lett. https://doi.org/10.1016/j.matlet.2021.130643

    Article  Google Scholar 

  35. Ebrahimiasl H, Azarifar D (2020) Copper-based Schiff base complex immobilized on core-shell Fe3O4@SiO2 as a magnetically recyclable and highly efficient nanocatalyst for green synthesis of 2-amino-4H-chromene derivatives. Appl Organomet Chem 34:1–20. https://doi.org/10.1002/aoc.5359

    Article  CAS  Google Scholar 

  36. Sarkheil M, Lashanizadegan M (2017) Copper(II) Schiff base complex immobilized on superparamagnetic Fe3O4@SiO2 as a magnetically separable nanocatalyst for oxidation of alkenes and alcohols. Appl Organomet Chem 31:1–8. https://doi.org/10.1002/aoc.3726

    Article  CAS  Google Scholar 

  37. Rakhtshah J, Yaghoobi F (2019) Catalytic application of new manganese Schiff-base complex immobilized on chitosan-coated magnetic nanoparticles for one-pot synthesis of 3-iminoaryl-imidazo[1,2-a]pyridines. Int J Biol Macromol 139:904–916. https://doi.org/10.1016/j.ijbiomac.2019.08.054

    Article  CAS  PubMed  Google Scholar 

  38. Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M (2020) Nickel(II) nanoparticles immobilized on EDTA-modified Fe3O4@SiO2 nanospheres as efficient and recyclable catalysts for ligand-free Suzuki-Miyaura coupling of aryl carbamates and sulfamates. ACS Omega 5:7406–7417. https://doi.org/10.1021/acsomega.9b04450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhuang Y, Liu J, Yuan S et al (2020) Degradation of octane using an efficient and stable core-shell Fe3O4@C during Fenton processes: enhanced mass transfer, adsorption and catalysis. Appl Surf Sci 515:146083. https://doi.org/10.1016/j.apsusc.2020.146083

    Article  CAS  Google Scholar 

  40. Sekhar DC, Diwakar BS, Madhavi N (2019) Synthesis, characterization and anti-bacterial screening of complex nanocomposite structures of SiO2@ZnO@Fe3O4 and SnO2@ZnO@Fe3O4. Nano-Struct Nano-Objects. https://doi.org/10.1016/j.nanoso.2019.100374

    Article  Google Scholar 

  41. Bandar S, Anbia M, Salehi S (2021) Comparison of MnO2 modified and unmodified magnetic Fe3O4 nanoparticle adsorbents and their potential to remove iron and manganese from aqueous media. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.156822

    Article  Google Scholar 

  42. Lou C, Jing T, Tian J et al (2019) 3-Dimensional graphene/Cu/Fe3O4 composites: immobilized laccase electrodes for detecting bisphenol A. J Mater Res 34:2964–2975. https://doi.org/10.1557/jmr.2019.248

    Article  CAS  Google Scholar 

  43. Kohzadi H, Soleiman-Beigi M (2021) XPS and structural studies of Fe3O4-PTMS-NAS@Cu as a novel magnetic natural asphalt base network and recoverable nanocatalyst for the synthesis of biaryl compounds. Sci Rep. https://doi.org/10.1038/s41598-021-04111-z

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ebrahimiasl H, Azarifar D (2020) Copper-based Schiff base complex immobilized on core-shell Fe3O4@SiO2 as a magnetically recyclable and highly efficient nanocatalyst for green synthesis of 2-amino-4H-chromene derivatives. Appl Organomet Chem. https://doi.org/10.1002/aoc.5359

    Article  Google Scholar 

  45. Raha S, Ahmaruzzaman M (2020) Facile fabrication of g-C3N4 supported Fe3O4 nanoparticles/ZnO nanorods: a superlative visible light responsive architecture for express degradation of pantoprazole. Chem Eng J 387:123766. https://doi.org/10.1016/j.cej.2019.123766

    Article  CAS  Google Scholar 

  46. Cai W, Guo M, Weng X et al (2020) Modified green synthesis of Fe3O4@SiO2 nanoparticles for pH responsive drug release. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2020.110900

    Article  Google Scholar 

  47. Pham VL, Kim DG, Ko SO (2018) Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe3O4 core-shell nanoparticles. Sci Total Environ 631–632:608–618. https://doi.org/10.1016/j.scitotenv.2018.03.067

    Article  CAS  PubMed  Google Scholar 

  48. Ni Z, Zhang C, Wang Z et al (2021) Performance and potential mechanism of transformation of polycyclic aromatic hydrocarbons (PAHs) on various iron oxides. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123993

    Article  PubMed  Google Scholar 

  49. Kaur M, Kapila A, Yempally V, Kaur H (2022) Synthesis, structural elucidation, and catalytic activity of bimetallic rhenium-tin complexes containing Schiff base ligand. J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.131545

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Megha gratefully acknowledges PEC and MHRD for providing GATE fellowship. SAIF/CIL lab, Panjab University is acknowledged for characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

M: Methodology, Data curation, Investigation, Writing—original draft. MK: Data curation, Writing—original draft, Conceptualization. D: Data curation, Investigation, Conceptualization. VY: Writing—review & editing, Conceptualization, Investigation. HK: Supervision, Resources, Writing—review & editing.

Corresponding author

Correspondence to Harminder Kaur.

Ethics declarations

Conflict of interests

The authors declare that they have no known conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megha, Kaur, M., Diksha et al. Copper(II) Schiff Base Complex Immobilized on Magnetic-Fe3O4 Nanoparticles for Selective Oxidation of Anthracene. Catal Lett 154, 2606–2619 (2024). https://doi.org/10.1007/s10562-023-04505-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04505-w

Keywords

Navigation