Skip to main content
Log in

Aerobic Oxidative Desulfurization of Petroleum Refinery Products Using Biogenic Zn2MnO4 Dendritic Fibrous

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cutting off refractory organosulfur compounds is an immense need in the modern age of petroleum refineries. The oxidation of these hard organosulfur compounds is dynamic in the course of deep oxidative desulfurization. Atmospheric molecular oxygen is an organic, innocuous, abundant, and economical oxidant. Microorganisms synthesize dendritic fibrous nanoparticles (DFNPs) in exposure to metal ions. In this research, microorganisms were used to produce Zn2MnO4 DFNPs in a biological process instead of a chemical method as a nanocatalyst. This biogenic nanoparticle has been used for the first time as a recyclable catalyst with external magnet and efficient in desulfurization process under environmentally friendly conditions with support of oxygen green oxidant, at atmospheric pressure, at low temperature, green water extraction agent, Distilled with the help of ultrasound as a source of green energy in a shorter time. This strategy has marvelous profits, including high economic yield and tolerance of functional groups. The present study underscores how metabolic processes in anaerobic bacteria could be mixed with green chemical technologies to generate extremely efficient catalytic reactions for ultrasound-assisted oxidative desulfurization of simulated fuel, natural gasoline, and sulfur mustard analogs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI (2014) Mater Sci Eng C 41:17–27

    Article  CAS  Google Scholar 

  2. Gericke M, Pinches A (2006) Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  3. Kang S, Bozhilov KN, Myung NV, Mulchandani A, Chen W (2008) Angew Chem Int Ed 47:5186–5189

    Article  CAS  Google Scholar 

  4. Dong Z, Le X, Dong C, Zhang W, Li X, Ma J (2015) Appl Catal B 162:372–380

    Article  CAS  Google Scholar 

  5. Maitya S, Eswaramoorthy M (2016) J Mater Chem A 4:3233–3237

    Article  Google Scholar 

  6. Lai Q, Zhang C, Holles JH (2016) Appl Catal A 528:1–13

    Article  CAS  Google Scholar 

  7. Chen H, Zhang S, Zhao Z, Liu M, Zhang Q (2019) Process Chem 31:571–579

    CAS  Google Scholar 

  8. Yuan D, Zhang C, Tang S, Li X, Tang J, Rao Y, Wang Z, Zhang Q (2019) Water Res 163:114861

    Article  CAS  PubMed  Google Scholar 

  9. Tang S, Li N, Yuan D, Tang J, Li X, Zhang C, Rao Y (2019) Chemosphere 234:658–667

    Article  CAS  PubMed  Google Scholar 

  10. Kr’ol A, Pomastowski P, Rafi’nska K, Railean-Plugaru V, Buszewski B (2017) Adv Colloid Interface Sci 249:37–52

    Article  Google Scholar 

  11. Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) Resour Efficient Technol 3:406–413

    Article  Google Scholar 

  12. Mahi FT, Bliss DF (2016) Zinc Oxide. Elsevier, Bulk Growth of

    Google Scholar 

  13. McCluskey MD (2018) 1-defects in ZnO, in: J. Stehr, I. Buyanova, W. Chen (Eds.), Woodhead Publishing, 1–25

  14. Fereshteh Z, Loghman-Estarki MR, Shoja Razavi R, Taheran M (2013) Mater Sci Semicond Process 16:547–553

    Article  CAS  Google Scholar 

  15. Kegel J, Povey IM, Pemble ME (2018) Nanomater Energy 54:409–428

    Article  CAS  Google Scholar 

  16. Dimapilis EAS, Hsu CS, Mendoza RMO, Lu MC (2018) Sus Environ Res 28:47–56

    Article  CAS  Google Scholar 

  17. Lu PJ, Huang SC, Chen YP, Chiueh LC, Shih DYC (2015) J Food Drug Anal 23:587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kiyani MM, Butt MA, Rehman H, Ali H, Hussain SA, Obaid S, Arif Hussain M, Mahmood T, Bokhari SAI (2019) J Trace Elem Med Biol 56:169–177

    Article  CAS  PubMed  Google Scholar 

  19. Gnaneshwar PV, Sudakaran SV, Abisegapriyan S, Sherine J, Ramakrishna S, Rahim MHA, Yusoff MM, Jose R, Venugopal JR (2019) Mater Sci Eng C 96:337–346

    Article  CAS  Google Scholar 

  20. Padmanabhan A, Kaushik M, Niranjan R, Richards JS, Ebright B, Venkatasubbu GD (2019) Appl Surf Sci 487:807–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seid ET, Dejene FB, Kroon RE (2019) Ceram. Int.

  22. Kasi G, Viswanathan K, Seo J (2019) Ceram Int 45:3230–3238

    Article  CAS  Google Scholar 

  23. Ozcariz A, Piña-Azamar DA, Zamarreño CR, Dominguez R, Arregui FJ (2019) Sens Actuators B Chem 281:698–704

    Article  CAS  Google Scholar 

  24. Ghosh M, Mandal S, Roy A, Chakrabarty S, Chakrabarti G, Pradhan SK (2020) Mater Sci Eng C 106:110160

    Article  CAS  Google Scholar 

  25. Sekhar DC, Diwakar BS, Madhavi N (2019) Nano-Struct Nano-Objects 19:100374

    Article  CAS  Google Scholar 

  26. Yadollahi M, Farhoudian S, Barkhordari S, Gholamali I, Farhadnejad H, Motasadizadeh H (2016) Int J Biol Macromol 82:273–278

    Article  CAS  PubMed  Google Scholar 

  27. Saleh TA, AL-Hammadi SA, (2021) Chem Eng J 406:125167

    Article  CAS  Google Scholar 

  28. Saleh TA (2021) Chem Eng J 404:126987

    Article  CAS  Google Scholar 

  29. Daraee M, Saeedirad R, Ghasemy E, Rashidi A (2021) Chem Eng 9:104806

    CAS  Google Scholar 

  30. Wang C, Zhong H, Wu W, Pan C, Wei X, Zhou G, Yang F (2019) ACS Omega 4:1652–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen M, Ding Y, Liu Y, Wang N, Yang B, Ma L (2018) Pet Sci Technol 36:141–147

    Article  CAS  Google Scholar 

  32. Moeinifard B, Najafi Chermahini A (2021) J Environ Chem Eng 9:105430

    Article  CAS  Google Scholar 

  33. Vedachalam S, Boahene P, Dalai AK (2020) Energ Fuel 34:15299–15312

    Article  CAS  Google Scholar 

  34. Wang C, Liu Z, Gao R, Liu J, An S, Zhang R, Zhao J (2020) New J Chem 44:6251–6260

    Article  CAS  Google Scholar 

  35. Li J, Liang Y, Tang X, Lei X (2021) Chem Eng Sci 242:116753

    Article  CAS  Google Scholar 

  36. Rezvani MA, Imani A (2021) J Environ Chem Eng 9:105009

    Article  CAS  Google Scholar 

  37. Rezvani MA, Khandan S (2019) Solid State Sci 98:106036

    Article  CAS  Google Scholar 

  38. Chen TC, Shen YH, Lee WJ, Lin CC, Wan MW (2010) J Clean Prod 18:1850–1858

    Article  CAS  Google Scholar 

  39. Choi AES, Roces S, Dugos N, Wan MW (2016) Sustain Environ Res 26:184–190

    Article  CAS  Google Scholar 

  40. Xu J, Zhao S, Ji Y, Song YF (2013) Chem Eur J 19:709–715

    Article  CAS  PubMed  Google Scholar 

  41. Mansourian SH, Shahhosseini S, Maleki A (2019) J Ind Eng Chem 80:576–589

    Article  CAS  Google Scholar 

  42. Rezvani MA, Khalafi N (2020) Mater Today Commun 22:100730

    Article  CAS  Google Scholar 

  43. Rezvani MA, Hadi M, Mirsadri SA (2020) Appl Organomet Chem 34:e5882

    Article  CAS  Google Scholar 

  44. Rezvani MA, Jafari N (2021) Ind Eng Chem Res 60:7599–7610

    Article  CAS  Google Scholar 

  45. Rezvani MA, Hadi M, Rezvani H (2021) Appl Organomet Chem 35:e6176

    Article  CAS  Google Scholar 

  46. Te M, Fairbridge C, Ring Z (2001) Appl Catal A-Gen 219:267–280

    Article  CAS  Google Scholar 

  47. Rezvani MA, Khandan S, Rahim M (2022) Int J Energy Res 46:2617–2632

    Article  CAS  Google Scholar 

  48. Rezvani MA, Hosseini S, Hassani Ardeshiri H (2022) Energy Fuels 36:7722–7732

    Article  CAS  Google Scholar 

  49. Craven M, Xiao D, Kunstmann-Olsen C, Kozhevnikova EF, Blanc F, Steiner A, Kozhevnikov IV (2018) Appl Catal Environ 231:82–91

    Article  CAS  Google Scholar 

  50. Rezvani MA, Shaterian M, Khalafi N (2019) J Nanostruct 9:349–364

    CAS  Google Scholar 

  51. Rezvani MA, Asli MA, Khandan S, Mousavi H, Aghbolagh ZS (2017) Chem Eng J 312:243–251

    Article  CAS  Google Scholar 

  52. Rezvani MA, Fallah Shojaei A, Mohamadi Zonoz F (2014) J Serb Chem Soc 79:1099–1110

    Article  CAS  Google Scholar 

  53. Rezvani MA, Shaterian M, Shokri Aghbolagh Z, Akbarzadeh F (2019) Chem Select 4:6370–6376

    CAS  Google Scholar 

  54. Lu M-C, Charisse Biel LC, Wan M-W, de Leon R, Arco S (2014) Int J Green Energy 11:833–848

    Article  CAS  Google Scholar 

  55. Wan M-W, Charisse Biel LC, Lu M-C, de Leon R, Arco S (2012) Desalin Water Treat 47:96–104

    Article  CAS  Google Scholar 

  56. Komintarachat C, Trakarnpruk W (2006) Ind Eng Chem Res 45:1853–1856

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Xu or Seyed Mohsen Sadeghzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Li, Y. & Sadeghzadeh, S.M. Aerobic Oxidative Desulfurization of Petroleum Refinery Products Using Biogenic Zn2MnO4 Dendritic Fibrous. Catal Lett 154, 2919–2931 (2024). https://doi.org/10.1007/s10562-023-04492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04492-y

Keywords

Navigation