Skip to main content
Log in

First-Principles Study of Oxygen Evolution Reaction on Ir with Different Coordination Numbers Anchoring at Specific Sites of Co3O4 (111) Surface

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Anchoring noble metals to non-noble metals oxide to create single-atom catalysts (SACs) was an appealing approach to improve atomic efficiency and catalyst activity with simultaneous reduction of cost. However, knowledge of how single-atom anchors at unique loading positions and varying numbers of coordination atoms behavior in oxygen evolution reaction (OER) was still inadequate. Herein, the Ir was chosen to anchor at three-fold face center cubic (FCC) hollow sites, three-fold hexagonal close packed (HCP) hollow sites, and Oxygen Vacancy (OV) sites on Co3O4 (111) surface with different coordination environments by first-principles study of OER. The results displayed that the overpotential (η) of threefold FCC hollow sites with four coordination oxygens (FCC-4O) was 0.35 V, which was the lowest overpotential among our catalysts. The d-band center and Bader charge results demonstrated the coordination oxygen could change Ir electron structure, specifically FCC-4O, making the adsorption between the carrier and the intermediate more moderate for reducing the energy barrier of the potential-determining step. When Ir possesses five coordination oxygens, the HCP sites spontaneously transformed into the FCC sites, showing it was an unstable state. In addition, band gap studies indicated that the OV sites catalysts had a reduced band gap and stronger electron transport ability, notably for the Ir with four-coordination hydroxyl group (OV-4OH), which led to high OER performance (η = 0.46 V). Finally, the solvation effect and kinetic stability were tested, it could be found that both FCC-4O and OV-4OH showed good OER performance, especially FCC has good stability and may be more possible in experimental conditions.

Graphical Abstract

The figure described volcano diagram of our catalysts and the illustration of FCC sites, HCP sites, and OV sites. FCC-4O had the best OER performance among our catalysts with η = 0.35 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  PubMed  Google Scholar 

  2. Kibsgaard J, Chorkendorff I (2019) Considerations for the scaling-up of water splitting catalysts. Nat Energy 4:430–433

    Article  Google Scholar 

  3. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365

    Article  CAS  PubMed  Google Scholar 

  4. Czelej K, Colmenares JC, Jabłczyńska K, Ćwieka K, Werner Ł, Gradoń L (2021) Sustainable hydrogen production by plasmonic thermophotocatalysis. Catal Today 380:156–186

    Article  CAS  Google Scholar 

  5. Zhang B, Zheng X, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L, Xu J, Liu M, Zheng L, García de Arquer FP, Dinh CT, Fan F, Yuan M, Yassitepe E, Chen N, Regier T, Liu P, Li Y, De Luna P, Janmohamed A, Xin HL, Yang H, Vojvodic A, Sargent EH (2016) Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352:333–337

    Article  CAS  PubMed  Google Scholar 

  6. Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF, Nørskov JK (2017) Materials for solar fuels and chemicals. Nat Mater 16:70–81

    Article  Google Scholar 

  7. Zhu YP, Guo C, Zheng Y, Qiao S-Z (2017) Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc Chem Res 50:915–923

    Article  CAS  PubMed  Google Scholar 

  8. Yue C, Wang L, Wang H, Du J, Lei M, Pu M (2022) First-principles study on the electrocatalytic oxygen evolution reaction on the (110) surfaces of layered double hydroxides. J Phys Chem C 126:18351–18365

    Article  CAS  Google Scholar 

  9. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:eaad4998

    Article  PubMed  Google Scholar 

  10. Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X (2018) Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J Am Chem Soc 140:7748–7759

    Article  CAS  PubMed  Google Scholar 

  11. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Norskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165

    Article  CAS  Google Scholar 

  12. Fang Y-H, Liu Z-P (2010) Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110). J Am Chem Soc 132:18214–18222

    Article  CAS  PubMed  Google Scholar 

  13. Kuznetsova E, Petrykin V, Sunde S, Krtil P (2015) Selectivity of nanocrystalline IrO2-based catalysts in parallel chlorine and oxygen evolution. Electrocatalysis 6:198–210

    Article  CAS  Google Scholar 

  14. Yang KR, Matula AJ, Kwon G, Hong J, Sheehan SW, Thomsen JM, Brudvig GW, Crabtree RH, Tiede DM, Chen LX, Batista VS (2016) Solution structures of highly active molecular Ir water-oxidation catalysts from density functional theory combined with high-energy X-ray scattering and EXAFS spectroscopy. J Am Chem Soc 138:5511–5514

    Article  CAS  PubMed  Google Scholar 

  15. Fu HQ, Zhang L, Wang CW, Zheng LR, Liu PF, Yang HG (2018) 1D/1D hierarchical nickel sulfide/phosphide nanostructures for electrocatalytic water oxidation. ACS Energy Lett 3:2021–2029

    Article  CAS  Google Scholar 

  16. Gu C, Hu S, Zheng X, Gao M-R, Zheng Y-R, Shi L, Gao Q, Zheng X, Chu W, Yao H-B, Zhu J, Yu S-H (2018) Synthesis of sub-2 nm iron-doped NiSe2 nanowires and their surface-confined oxidation for oxygen evolution catalysis. Angew Chem Int Ed 57:4020–4024

    Article  CAS  Google Scholar 

  17. García-Mota M, Bajdich M, Viswanathan V, Vojvodic A, Bell AT, Nørskov JK (2012) Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J Phys Chem C 116:21077–21082

    Article  Google Scholar 

  18. Ye S, Wang J, Hu J, Chen Z, Zheng L, Fu Y, Lei Y, Ren X, He C, Zhang Q, Liu J (2021) Electrochemical construction of low-crystalline CoOOH nanosheets with short-range ordered grains to improve oxygen evolution activity. ACS Catal 11:6104–6112

    Article  CAS  Google Scholar 

  19. Kong Q, Feng W, Xie X, Zhang S, Yuan X, Sun C (2018) Morphology-controlled synthesis of Co3O4 materials and its electrochemical catalytic properties towards oxygen evolution reaction. Catal Lett 148:3771–3778

    Article  CAS  Google Scholar 

  20. Xu Y, Zhang F, Sheng T, Ye T, Yi D, Yang Y, Liu S, Wang X, Yao J (2019) Clarifying the controversial catalytic active sites of Co3O4 for the oxygen evolution reaction. J Mater Chem A 7:23191–23198

    Article  CAS  Google Scholar 

  21. Chen Z, Kronawitter CX, Yeh Y-W, Yang X, Zhao P, Yao N, Koel BE (2017) Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium. J Mater Chem A 5:842–850

    Article  CAS  Google Scholar 

  22. Zhang Z, Feng C, Wang D, Zhou S, Wang R, Hu S, Li H, Zuo M, Kong Y, Bao J, Zeng J (2022) Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nat Commun 13:2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gawande MB, Ariga K, Yamauchi Y (2021) Single-atom catalysts. Small 17:2101584

    Article  CAS  Google Scholar 

  24. Kumar P, Kannimuthu K, Zeraati AS, Roy S, Wang X, Wang X, Samanta S, Miller KA, Molina M, Trivedi D, Abed J, Campos Mata MA, Al-Mahayni H, Baltrusaitis J, Shimizu G, Wu YA, Seifitokaldani A, Sargent EH, Ajayan PM, Hu J, Kibria MG (2023) High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. J Am Chem Soc 145:8052–8063

    Article  CAS  PubMed  Google Scholar 

  25. Mukherjee B (2021) First principles investigation on cobalt–tetracyanoquinodimethane monolayer for efficient Bi-functional single atom electrocatalyst. J Electroanal Chem 897:115602

    Article  CAS  Google Scholar 

  26. Mukherjee B (2021) Highly efficient electrocatalyst for oxygen evolution reaction: DFT investigation on transition metal-tetracyanoquinodimethane monolayer. ChemistrySelect 6:609–616

    Article  CAS  Google Scholar 

  27. Cai C, Wang M, Han S, Wang Q, Zhang Q, Zhu Y, Yang X, Wu D, Zu X, Sterbinsky GE, Feng Z, Gu M (2021) Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal 11:123–130

    Article  CAS  Google Scholar 

  28. Dai Y, Yu J, Wang J, Shao Z, Guan D, Huang Y-C, Ni M (2022) Bridging the charge accumulation and high reaction order for high-rate oxygen evolution and long stable Zn-air batteries. Adv Funct Mater 32:2111989

    Article  CAS  Google Scholar 

  29. Lei Z, Cai W, Rao Y, Wang K, Jiang Y, Liu Y, Jin X, Li J, Lv Z, Jiao S, Zhang W, Yan P, Zhang S, Cao R (2022) Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity. Nat Commun 13:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Z, Tan G, Kumar A, Liu H, Yang X, Gao W, Bai L, Chang H, Kuang Y, Li Y, Sun X (2023) First-principles study of oxygen evolution on Co3O4 with short-range ordered Ir doping. Mol Catal 535:112852

    Article  CAS  Google Scholar 

  31. Shan J, Ye C, Jiang Y, Jaroniec M, Zheng Y, Qiao S-Z (2022) Metal-metal interactions in correlated single-atom catalysts. Sci Adv 8:eabo0762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng Y, Gao R, Zheng L, Sun L, Hu Z, Liu X (2019) Ultrathin Co3O4 nanosheets with edge-enriched 111 planes as efficient catalysts for lithium-oxygen batteries. ACS Catal 9:3773–3782

    Article  CAS  Google Scholar 

  33. Yan G, Wähler T, Schuster R, Schwarz M, Hohner C, Werner K, Libuda J, Sautet P (2019) Water on oxide surfaces: a triaqua surface coordination complex on Co3O4(111). J Am Chem Soc 141:5623–5627

    Article  CAS  PubMed  Google Scholar 

  34. Schwarz M, Faisal F, Mohr S, Hohner C, Werner K, Xu T, Skála T, Tsud N, Prince KC, Matolín V, Lykhach Y, Libuda J (2018) Structure-dependent dissociation of water on cobalt oxide. J Phys Chem Lett 9:2763–2769

    Article  CAS  PubMed  Google Scholar 

  35. Fickenscher G, Hohner C, Xu T, Libuda J (2021) Adsorption of D2O and CO on Co3O4(111): water stabilizes coadsorbed CO. J Phys Chem C 125:26785–26792

    Article  CAS  Google Scholar 

  36. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  37. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  38. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  39. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  40. Chadi DJ (1977) Spin-orbit splitting in crystalline and compositionally disordered semiconductors. Phys Rev B 16:790–796

    Article  CAS  Google Scholar 

  41. Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319:178–184

    Article  CAS  Google Scholar 

  42. Saal JE, Wang Y, Shang S, Liu Z-K (2010) Thermodynamic properties of Co3O4 and Sr6Co5O15 from first-principles. Inorg Chem 49:10291–10298

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Maxisch T, Ceder G (2007) A first-principles approach to studying the thermal stability of oxide cathode materials. Chem Mater 19:543–552

    Article  CAS  Google Scholar 

  44. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360

    Article  Google Scholar 

  45. Cai Z, Zhou D, Wang M, Bak S-M, Wu Y, Wu Z, Tian Y, Xiong X, Li Y, Liu W, Siahrostami S, Kuang Y, Yang X-Q, Duan H, Feng Z, Wang H, Sun X (2018) Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew Chem Int Ed 57:9392–9396

    Article  CAS  Google Scholar 

  46. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  47. Tkalych AJ, Zhuang HL, Carter EA (2017) A density functional + U assessment of oxygen evolution reaction mechanisms on β-NiOOH. ACS Catal 7:5329–5339

    Article  CAS  Google Scholar 

  48. Wu R, Liu D, Geng J, Bai H, Li F, Zhou P, Pan H (2022) Electrochemical reduction of CO2 on single-atom catalysts anchored on N-terminated TiN (111): low overpotential and high selectivity. Appl Surf Sci 602:154239

    Article  CAS  Google Scholar 

  49. Wei G, Shen Y, Zhao X, Wang Y, Zhang W, An C (2022) Hexagonal phase Ni3Fe nanosheets toward high-performance water splitting by a room-temperature methane plasma method. Adv Funct Mater 32:2109709

    Article  CAS  Google Scholar 

  50. Zhang Y, Zhang J, Huang J (2019) Potential-dependent volcano plot for oxygen reduction: mathematical origin and implications for catalyst design. J Phys Chem Lett 10:7037–7043

    Article  CAS  PubMed  Google Scholar 

  51. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89

    Article  CAS  Google Scholar 

  52. Hu S, Li W-X (2021) Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 374:1360–1365

    Article  CAS  PubMed  Google Scholar 

  53. Xu J, Yu B, Zhao H, Cao S, Song L, Xing K, Zhou R, Lu X (2020) Oxygen-doped VS4 microspheres with abundant sulfur vacancies as a superior electrocatalyst for the hydrogen evolution reaction. ACS Sustain Chem Eng 8:15055–15064

    Article  CAS  Google Scholar 

  54. Liu M, Li N, Cao S, Wang X, Lu X, Kong L, Xu Y, Bu X-H (2022) A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv Mater 34:2107421

    Article  CAS  Google Scholar 

  55. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  PubMed  Google Scholar 

  56. Tajuddin AAH, Wakisaka M, Ohto T, Yu Y, Fukushima H, Tanimoto H, Li X, Misu Y, Jeong S, Fujita J-I, Tada H, Fujita T, Takeguchi M, Takano K, Matsuoka K, Sato Y, Ito Y (2023) Corrosion-resistant and high-entropic non-noble-metal electrodes for oxygen evolution in acidic media. Adv Mater 35:2207466

    Article  CAS  Google Scholar 

  57. Orville-Thomas WJ (1996) Atoms in molecules—a quantum theory: Richard F.W. Bader, Clarendon Press, Oxford, U.K. 1994, 438 pp., £25. J Mol Struct: THEOCHEM 360:175

  58. Xu S-M, Liang X, Liu X, Bai W-L, Liu Y-S, Cai Z-P, Zhang Q, Zhao C, Wang K-X, Chen J-S (2020) Surface engineering donor and acceptor sites with enhanced charge transport for low-overpotential lithium–oxygen batteries. Energy Storage Mater 25:52–61

    Article  Google Scholar 

  59. Jiao X, Hu Z, Zheng K, Zhu J, Wu Y, Zhang X, Hu J, Yan W, Zhu J, Sun Y, Xie Y (2022) Direct polyethylene photoreforming into exclusive liquid fuel over charge-asymmetrical dual sites under mild conditions. Nano Lett 22:10066–10072

    Article  CAS  PubMed  Google Scholar 

  60. Chen F, Ding J, Guo K, Yang L, Zhang Z, Yang Q, Yang Y, Bao Z, He Y, Ren Q (2021) CoNi alloy nanoparticles embedded in metal-organic framework-derived carbon for the highly efficient separation of xenon and krypton via a charge-transfer effect. Angew Chem Int Ed 60:2431–2438

    Article  CAS  Google Scholar 

  61. Sharma HN, Sharma V, Hamzehlouyan T, Epling W, Mhadeshwar AB, Ramprasad R (2014) SOx oxidation kinetics on Pt(111) and Pd(111): first-principles computations meet microkinetic modeling. J Phys Chem C 118:6934–6940

    Article  CAS  Google Scholar 

  62. Zhang B, Wang L, Cao Z, Kozlov SM, García de Arquer FP, Dinh CT, Li J, Wang Z, Zheng X, Zhang L, Wen Y, Voznyy O, Comin R, De Luna P, Regier T, Bi W, Alp EE, Pao C-W, Zheng L, Hu Y, Ji Y, Li Y, Zhang Y, Cavallo L, Peng H, Sargent EH (2020) High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat Catal 3:985–992

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project (No.2022YFA1504001), and the Beijing Natural Science Foundation (No. Z210016). The authors thank the National Supercomputing Center in Shenzhen and the High-Performance Computing (HPC) Platform at Beijing University of Chemical Technology (BUCT) for providing part of the computational sources.

Author information

Authors and Affiliations

Authors

Contributions

WX, ZZ, HS, and YZ participated in the preliminary background investigation. WX carried out DFT calculations, processed the results, and wrote the original draft. YK provided writing review and editing. YL provided resources, writing review and editing. And all authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Yaping Li.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 732 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Zhang, Z., Sun, H. et al. First-Principles Study of Oxygen Evolution Reaction on Ir with Different Coordination Numbers Anchoring at Specific Sites of Co3O4 (111) Surface. Catal Lett 154, 2488–2502 (2024). https://doi.org/10.1007/s10562-023-04486-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04486-w

Keywords

Navigation