Skip to main content
Log in

H2O Promotion of CO Oxidation On Oxidized Pt/CeFeOx

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Steady-state, differential reaction rates for CO oxidation, with stoichiometric O2:CO feeds, were measured in the presence and absence of H2O over Pt catalysts supported on thin films of CeFeOx, FeOx, CeOx, and LaFeO3 that had been deposited on γ-Al2O3 by Atomic Layer Deposition. Prior to rate measurements, each catalyst was oxidized and reduced five times at 1073 K. Only the oxidized Pt/CeFeOx/γ-Al2O3 catalyst exhibited significantly increased CO oxidation rates upon the introduction of H2O. A relatively small deuterium isotope effect was observed and suggests that O–H bond cleavage is not involved in the kinetically relevant step of this process. The nature of the catalyst support, the pretreatment of the catalyst, and the effects of Pt particle size are discussed in relation to the observed H2O promotion of CO oxidation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bunluesin T, Gorte RJ, Graham GW (1997) CO oxidation for the characterization of reducibility in oxygen storage components of three-way automotive catalysts. Appl Catal B: Environ 14:105–115

    Article  CAS  Google Scholar 

  2. Freund HJ, Meijer G, Scheffler M, Schlogl R, Wolf M (2011) CO Oxidation as a Prototypical Reaction for Heterogeneous Processes. Angew Chem Int Ed 50:10064–10094

    Article  CAS  Google Scholar 

  3. Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N (2002) Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 418:164–167

    Article  CAS  PubMed  Google Scholar 

  4. Kaspar J, Fornasiero P, Hickey N (2003) Automotive catalytic converters: current status and some perspectives. Catal Today 77:419–449

    Article  CAS  Google Scholar 

  5. Heck RM, Farrauto RJ, Gulati ST (2009) Catalytic air pollution control: commercial technology, 3rd edn. John Wiley, New Jersey

    Book  Google Scholar 

  6. Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641

    Article  CAS  PubMed  Google Scholar 

  7. Chen MS, Cal Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601:5326–5331

    Article  CAS  Google Scholar 

  8. Lafyatis DS, Ansell GP, Bennett SC, Frost JC, Millington PJ, Rajaram RR, Walker AP, Ballinger TH (1998) Ambient temperature light-off for automobile emission control. Appl Catal B: Environ 18:123–135

    Article  CAS  Google Scholar 

  9. Pozdnyakova O, Teschner D, Wootsch A, Krohnert J, Steinhauer B, Sauer H, Toth L, Jentoft FC, Knop-Gericke A, Paal Z, Schlogl R (2006) Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions. J Catal 237:1–16

    Article  CAS  Google Scholar 

  10. Soliman NK (2019) Factors affecting CO oxidation reaction over nanosized materials: A review. J Mater Res Technol 8:2395–2407

    Article  CAS  Google Scholar 

  11. Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Osterlund L, Thormahlen P, Langer V (2002) On the catalytic activity of Co3O4 in low-temperature CO oxidation. J Catal 211:387–397

    Article  CAS  Google Scholar 

  12. Bi YS, Chen L, Lu GX (2007) Constructing surface active centres using Pd-Fe-O on zeolite for CO oxidation. J Mol Catal A: Chem 266:173–179

    Article  CAS  Google Scholar 

  13. Avgouropoulos G, Ioannides T, Papadopoulou C, Batista J, Hocevar S, Matralis HK (2002) A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal Today 75:157–167

    Article  CAS  Google Scholar 

  14. Zhao S, Chen F, Duan SB, Shao B, Li TB, Tang HL, Lin QQ, Zhang JY, Li L, Huang JH, Bion N, Liu W, Sun H, Wang AQ, Haruta M, Qiao BT, Li J, Liu JY, Zhang T (2019) Remarkable active-site dependent H2O promoting effect in CO oxidation. Nat Commun 10:3824–3832

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ojeda M, Zhan BZ, Iglesia E (2012) Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters. J Catal 285:92–102

    Article  CAS  Google Scholar 

  16. Wang CL, Gu XK, Yan H, Lin Y, Li JJ, Liu DD, Li WX, Lu JL (2017) Water-Mediated Mars-Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt1 Catalyst. ACS Catal 7:887–891

    Article  CAS  Google Scholar 

  17. Wang T, Xing JY, Jia AP, Tang C, Wang YJ, Luo MF, Lu JQ (2020) CO oxidation over Pt/Cr1.3Fe0.7O3 catalysts: Enhanced activity on single Pt atom by H2O promotion. J Catal 382:192–203

    Article  CAS  Google Scholar 

  18. Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD (2014) The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345:1599–1602

    Article  CAS  PubMed  Google Scholar 

  19. Montemore MM, van Spronsen MA, Madix RJ, Friend CM (2018) O2 Activation by Metal Surfaces: Implications for Bonding and Reactivity on Heterogeneous Catalysts. Chem Rev 118:2816–2862

    Article  CAS  PubMed  Google Scholar 

  20. Nibbelke RH, Campman MAJ, Hoebink JHBJ, Marin GB (1997) Kinetic study of the CO oxidation over Pt/γ-Al2O3 and Pt/Rh/CeO2/γ-Al2O3 in the presence of H2O and CO2. J Catal 171:358–373

    Article  CAS  Google Scholar 

  21. Hu YT, Liu XL, Zou Y, Xie HJ, Zhu TY (2022) Nature of support plays vital roles in H2O promoted CO oxidation over Pt catalysts. J Catal 416:364–374

    Article  CAS  Google Scholar 

  22. Bunluesin T, Gorte RJ, Graham GW (1998) Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B: Environ 15:107–114

    Article  CAS  Google Scholar 

  23. Wang X, Gorte RJ (2003) The effect of Fe and other promoters on the activity of Pd/ceria for the water-gas shift reaction. Appl Catal A: Gen 247:157–162

    Article  CAS  Google Scholar 

  24. Shen K, Fan MJ, Kwon O, Viescas AJ, Papaefthymiou GC, Gorte RJ, Vohs JM (2023) Reversible perovskite-fluorite phase transition in alumina-supported CeFeOx films. J Mater Chem A 11:4183–4193

    Article  CAS  Google Scholar 

  25. Onn TM, Zhang SY, Arroyo-Ramirez L, Xia Y, Wang C, Pan XQ, Graham GW, Gorte RJ (2017) High-surface-area ceria prepared by ALD on Al2O3 support. Appl Catal B: Environ 201:430–437

    Article  CAS  Google Scholar 

  26. Mao XY, Foucher AC, Montini T, Stach EA, Fornasiero P, Gorte RJ (2020) Epitaxial and Strong Support Interactions between Pt and LaFeO3 Films Stabilize Pt Dispersion. J Am Chem Soc 142:10373–10382

    Article  CAS  PubMed  Google Scholar 

  27. Lee SW, Monai M, Shen K, Chang J, Vohs JM, Gorte RJ (2022) A Study of How LaFeO3 and CaTiO3 Supports Affect the Oxidation, Hydrogenation, and Methane Steam Reforming Activity of Pt and Ni Catalysts. J Phys Chem C 126:11619–11628

    Article  CAS  Google Scholar 

  28. Yu AS, Kungas R, Vohs JM, Gorte RJ (2013) Modification of SOFC Cathodes by Atomic Layer Deposition. J Electrochem Soc 160:F1225–F1231

    Article  CAS  Google Scholar 

  29. Kwon O, Foucher AC, Huang RJ, Stach EA, Vohs JM, Gorte RJ (2022) Evidence for redispersion of Ni on LaMnO3 films following high-temperature oxidation. J Catal 407:213–220

    Article  CAS  Google Scholar 

  30. Shen K, Paige JM, Kwon O, Gorte RJ, Vohs JM (2021) Thermodynamic Properties of Iron Oxide Thin-Film Oxygen Carriers Prepared by Atomic Layer Deposition. Ind Eng Chem Res 60:12228–12234

    Article  CAS  Google Scholar 

  31. Shen K, Lee S, Kwon O, Gorte RJ, Vohs JM (2023) The Effect of Perovskite-Fluorite Phase Transition on the Catalytic Activity of Pt/CeFeOx. ACS Catal (In press).

  32. Meunier FC, Cardenas L, Kaper H, Smid B, Vorokhta M, Grosjean R, Aubert D, Dembele K, Lunkenbein T (2021) Synergy between Metallic and Oxidized Pt Sites Unravelled during Room Temperature CO Oxidation on Pt/Ceria. Angew Chem Int Ed 60:3799–3805

    Article  CAS  Google Scholar 

  33. Lin C, Foucher AC, Ji YC, Curran CD, Stach EA, McIntosh S, Gorte RJ (2019) “Intelligent” Pt Catalysts Studied on High-Surface-Area CaTiO3 Films. ACS Catal 9:7318–7327

    Article  CAS  Google Scholar 

  34. Gorte RJ (2010) Ceria in Catalysis: From Automotive Applications to the Water Gas Shift Reaction. AIChE J 56:1126–1135

    Article  CAS  Google Scholar 

  35. Cargnello M, Doan-Nguyen VVT, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts. Science 341:771–773

    Article  CAS  PubMed  Google Scholar 

  36. Bunluesin T, Putna ES, Gorte RJ (1996) A comparison of CO oxidation on ceria-supported Pt, Pd, and Rh. Catal Lett 41:1–5

    Article  CAS  Google Scholar 

  37. Lu YB, Thompson C, Kunwar D, Datye AK, Karim AM (2020) Origin of the High CO Oxidation Activity on CeO2 Supported Pt Nanoparticles: Weaker Binding of CO or Facile Oxygen Transfer from the Support? ChemCatChem 12:1726–1733

    Article  CAS  Google Scholar 

  38. Tanaka H, Taniguchi M, Uenishi M, Kajita N, Tan I, Nishihata Y, Mizuki J, Narita K, Kimura M, Kaneko K (2006) Self-regenerating Rh- and Pt-based perovskite catalysts for automotive-emissions control. Angew Chem Int Ed 45:5998–6002

    Article  CAS  Google Scholar 

  39. Manasilp A, Gulari E (2002) Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl Catal B: Environ 37:17–25

    Article  CAS  Google Scholar 

  40. Cho SH, Park JS, Choi SH, Lee SK, Kim SH (2005) Effect of water vapor on carbon monoxide oxidation over promoted platinum catalysts. Catal Lett 103:257–261

    Article  CAS  Google Scholar 

  41. Feng CL, Liu XL, Zhu TY, Hu YT, Tian MK (2021) Catalytic oxidation of CO over Pt/TiO2 with low Pt loading: The effect of H2O and SO2. Appl Catal A: Gen 622:118218–118225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research, under AFOSR Award No. FA9550-19-1-0326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Vohs.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 336 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Gorte, R.J. & Vohs, J.M. H2O Promotion of CO Oxidation On Oxidized Pt/CeFeOx. Catal Lett 154, 2414–2421 (2024). https://doi.org/10.1007/s10562-023-04480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04480-2

Keywords

Navigation