Skip to main content

Advertisement

Log in

Cu/ZIF-8 Derived Cu/ZnO/C Catalysts for Efficient Conversion of Glycerol to Lactic Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic conversion of glycerol to lactic acid has been considered as one of the effective ways to solve the problem of glycerol surplus. In this paper, we reported a facile synthesis of Cu/ZnO/C by direct calcination of Cu-supported zeolitic imidazolate framework(ZIF-8), and the performance of the catalysts for converting glycerol to lactic acid were investigated. The properties of Cu/ZnO/C catalysts were characterized by XRD, BET, SEM and TG techniques. The results showed that nano-copper was distributed uniformly on the porous carbon carrier. The zinc oxide after thermal treatment provided abundant metal active sites and had synergistic effect with nano copper. In addition, the lactic acid selectivity of 84% was obtained at the glycerol conversion of 95.1% at 230 °C, 1.5 MPa and 15% copper loading for 6 h reaction. Moreover, the yield of lactic acid still remained above 80% after being recycled four times.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ennetta R, Soyhan HS, Koyunoglu C et al (2022) Current technologies and future trends for biodiesel production: a Review. Arab J Sci Eng 47:15133–15151

    Article  Google Scholar 

  2. Varanda MG, Pinto G, Martins F (2011) Life cycle analysis of biodiesel production. Fuel Process Technol 92:1087–1094

    Article  CAS  Google Scholar 

  3. Moklis MH, Cheng S, Cross JS (2023) Current and future trends for crude glycerol upgrading to high value-added products. Sustainbility 15(4):2979

    Article  CAS  Google Scholar 

  4. Quispe CAG, Coronado CJR, Carvalho JA (2013) Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew Sustain Energy Rev 27:475–493

    Article  CAS  Google Scholar 

  5. Long YD, Fang Z (2013) Hydrothermal conversion of glycerol to chemicals and hydrogen: review and perspective. Biofuels, Bioprod Biorefin 6(6):686–702

    Article  Google Scholar 

  6. Jiang H, Ma JS, Zeng BQ et al (2022) Research progress in 1, 3-propanediol production by fermenting crude glycerol. Biotechnol Bull 38(10):45–53

    Google Scholar 

  7. García-Sancho C, Cecilia JA, Moreno-Ruiz A et al (2015) Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. Appl Catal B 179:139–149

    Article  Google Scholar 

  8. Wang D, Zhang X, Cong X et al (2018) Influence of Zr on the performance of Mg-Al catalysts via hydrotalcite-like precursors for the synthesis of glycerol carbonate from urea and glycerol. Appl Catal A 555:36–46

    Article  CAS  Google Scholar 

  9. Wang J, Yao G, Jin F (2007) One-pot catalytic conversion of carbohydrates into alkyl lactates with Lewis acids in alcohols. Mol Catal 435:82–90

    Article  Google Scholar 

  10. Arcanjo MRA, Silva IJ, Cavalcante CL et al (2009) Glycerol valorization: conversion to lactic acid by heterogeneous catalysis and separation by ion exchange chromatography. Biofuels, Bioprod Biorefin 14:357–370

    Article  Google Scholar 

  11. Lasprilla AJR, Martinez GAR, Lunelli BH et al (2012) Polylactic acid synthesis for application in biomedical devices: a review. Biotechnol Adv 30(1):321–328

    Article  CAS  PubMed  Google Scholar 

  12. Kim J, Kim YM, Lebaka VR (2022) Lactic acid for green chemical industry: recent advances in and future prospects for production technology, recovery, and applications. Fermentation-Basel 8(11):609

    Article  CAS  Google Scholar 

  13. Djukic-Vukovic AP, Mojovic LV, Vukašinović-Sekulić MS (2012) Effect of different fermentation parameters on L-lactic acid production from liquid distillery stillage. Food Chem 134:10381043

    Article  Google Scholar 

  14. Li XS, Gao DC, Wang LM et al (2017) Research progress on preparation of D-lactic acid by fermentation. Contemp Chem Ind 46(8):1659–1662

    Google Scholar 

  15. Li ZJ, Ren D, Su WT et al (2011) Breeding of high yield L-lactic acid strain and optimization of fermentation conditions. J Sichuan Univ 48(2):451–456

    CAS  Google Scholar 

  16. Ghaffar T, Irshao M, Anwar Z et al (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7(2):222–229

    CAS  Google Scholar 

  17. Oh H, Wee YJ, Yun JS et al (2005) Lactic acid production from agricultural resources as cheap raw materials. Biores Technol 196:1492–1498

    Article  Google Scholar 

  18. Murillo B, Zornoza B, De La Iglesia O et al (2016) Chemocatalysis of sugars to produce lactic acid derivatives on zeolitic imidazolate frameworks. J Catal 334:60–67

    Article  CAS  Google Scholar 

  19. Auneau F, Aranil S, Besson M et al (2012) Heterogeneous transformation of glycerol to lactic acid. Top Catal 55(7/10):474–479

    Article  CAS  Google Scholar 

  20. Kishida H, Jin F, Zhou Z et al (2005) Conversion of glycerin into lactic acid by alkaline hydrothermal reaction. Chem Lett 34:1560–1561

    Article  CAS  Google Scholar 

  21. Dutta M, Das K, Prathapa SJ et al (2020) Selective and high yield transformation of glycerol to lactic acid using NNN pincer ruthenium catalysts. Chem Commun 56:9886–9889

    Article  CAS  Google Scholar 

  22. Evans CD, Douthwaite M, Carter JH et al (2020) Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. J Chem Phys 152:134705

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Shen L, Yu Z, Zhang D et al (2019) Glycerol valorization to lactic acid catalyzed byhydroxyapatite-supported palladium particles. J Chem Technol Biotechnol 94:204–215

    Article  CAS  Google Scholar 

  24. Bruno AM, Chagas CA, Souza MMVM et al (2018) Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reactionsystem. Renew Energy 118:160–171

    Article  CAS  Google Scholar 

  25. Wang C, Zhang X, Li J et al (2021) Gold nanoparticles on nanosheets derived from layered rare-earth hydroxides for catalytic glycerol-to-lactic acid conversion. ACS Appl Mater Interfaces 13:522–530

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Shen Y, Zhang S, Li H et al (2010) Efficient synthesis of lactic acid by aerobic oxidation of glycerol on Au-Pt/TiO2 catalysts. Chem-A Euro J 16:7368–7371

    Article  CAS  Google Scholar 

  27. Shen LQ, Zhou X, Zhang CX et al (2019) Functional characterization of bimetallic CuPdx nanoparticles in hydrothermal conversion of glycerol to lactic acid. Food Chem 43(8):12931

    Google Scholar 

  28. Qiu L, Yin HX, Yin HB et al (2018) Catalytic conversion of glycerol to lactic acid over hydroxyapatite-supported metallic Ni-0 nanoparticles. J Nanosci Nanotechnol 18:4734–4745

    Article  CAS  PubMed  Google Scholar 

  29. Yin HX, Yin HB, Wang AL et al (2018) Catalytic conversion of glycerol to lactic acid over graphite-supported nickel nanoparticles and reaction kinetics. J Ind Eng Chem 57:226–235

    Article  CAS  Google Scholar 

  30. Xiu Z, Wang H, Cai C et al (2020) Ultrafast glycerol conversion to lactic acid over magnetically recoverable Ni−NiOx@C catalysts. Ind Eng Chem Res 59:9912–9925

    Article  CAS  Google Scholar 

  31. Torres S, Palacio R, López D (2021) Support effect in Co3O4-based catalysts for selective partial oxidation of glycerol to lactic acid. Appl Catal A 621:118199

    Article  CAS  Google Scholar 

  32. Qiu K, Shu YX, Zhang J et al (2022) Effective and stable zeolite imidazole framework-supported copper nanoparticles (Cu/ZIF-8) for glycerol to lactic acid. Catal Lett 152:172–186

    Article  CAS  Google Scholar 

  33. Zhang JJ, Wu XY, Chen JZ et al (2023) Efficient and stable Cu-Cu2O@NC catalysts for selective catalytic conversion of glycerol to lactic acid. ChemCatChem. https://doi.org/10.1002/cctc.202201139

    Article  Google Scholar 

  34. Wang A, Xu Q, Yin H (2022) Synthesis of lactic acid starting from glycerol catalyzed by CaO-supported CuO and metallic Cu catalysts in Ca(OH)2 aqueous solution. React Kinet Mech Catal 135:3205–3221

    Article  CAS  Google Scholar 

  35. Xia W, Mahmood A, Zou R et al (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8(7):1837–1866

    Article  CAS  Google Scholar 

  36. Zhang S, Liu H, Liu P et al (2015) A template-free method for stable CuO hollow microspheres fabricated from a metal organic framework (HKUST-1). Nanoscale 7(21):9411–9415

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Tahmouresilerd B, Larson PJ, Unruh DK et al (2018) Make room for iodine: systematic pore tuning of multivariate metal-organic frameworks for the catalytic oxidation of hydroquinones using hypervalent iodine. Catal Sci Technol 8(17):4349–4357

    Article  CAS  Google Scholar 

  38. Liu J, Chen L, Cui H et al (2014) Cheminform abstract: Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. J Cheminfomatics 45(43):6011–6061

    Google Scholar 

  39. Xie MH, Wang Y, Li RF et al (2018) A multifunctional co-based metal-organic framework: heterogeneous catalysis, chemiluminescence sensing and moisture-dependent solvatochromism. Dalton Trans 47(35):12406–12413

    Article  CAS  PubMed  Google Scholar 

  40. Li ZF, Shen Y, Zhang Q et al (2022) Budget MOF-derived catalyst to realize full conversion from furfural to furfuryl alcohol. Mol Catal 518:112092

    Article  CAS  Google Scholar 

  41. Xue Y, Li CJ, Zhou XX et al (2022) MOF-derived Cu/Bi Bi-metallic catalyst to enhance selectivity toward formate for CO2 electroreduction. ChemElectroChem. https://doi.org/10.1002/celc.202101648

    Article  Google Scholar 

  42. Zhong W, Liu H, Bai C et al (2015) Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts. ACS Catal 5:1850–1856

    Article  CAS  Google Scholar 

  43. Jiang M, Cao XP, Zhu DD et al (2016) Hierarchically porous n-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochim Acta 196:699–707

    Article  CAS  Google Scholar 

  44. Cao PK, Liu YM, Quan X et al (2019) Nitrogen-doped hierarchically porous carbon nanopolyhedras derived from core-shell ZIF-8@ZIF-8 single crystals for enhanced oxygen reduction reaction. Catal Today 327:366–373

    Article  CAS  Google Scholar 

  45. Park SK, Park JS, Kang YC (2018) Metal-organic-framework-derived n-doped hierarchically porous carbon polyhedrons anchored on crumpled graphene balls as efficient selenium hosts for high-performance lithium-selenium batteries. ACS Appl Mater Interfaces 10(19):16531–16540

    Article  CAS  PubMed  Google Scholar 

  46. Zhang JP, Liu XY, Chen WK et al (2020) N configuration control of N-doped carbon for stabilizing Cu nanoparticles: the synergistic effects on oxy-carbonylation of methanol. Carbon 158:836–845

    Article  CAS  Google Scholar 

  47. Dahal B, Chae SH, Muthurasu A et al (2020) An innovative synthetic approach for core-shell multiscale hierarchically porous boron and nitrogen codoped carbon nanofibers for the oxygen reduction reaction. J Power Sour 453:11

    Article  Google Scholar 

  48. Chen B, Ma G, Zhu Y et al (2016) Metal-organic-framework-derived bi-metallic sulfide on N, S-codoped porous carbon nanocomposites as multifunctional electrocatalysts. J Power Sources 334:112–119

    Article  CAS  Google Scholar 

  49. Choi M, Cho HS, Srivastava R et al (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5(9):718–723

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Fox DM, Harris RH, Bellayer S et al (2011) The pillaring effect of the 1, 2-dimethyl-3(benzyl ethyl iso-butyl poss) imidazolium cation in polymer/montmorillonite nanocomposites. Polymer 52(23):5335–5343

    Article  CAS  Google Scholar 

  51. Hao Y, Zhang S, Tao P et al (2020) Pillaring effect of k ion anchoring for stable V2O5-based zinc-ion battery cathodes. Chemnanomat 6(5):797–805

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (No.2019YFB1504003).

Funding

National Key Research and Development Program of China, Grant No. 2019YFB1504003

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or personal relationships that may affect the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Qiu, K., Sun, D. et al. Cu/ZIF-8 Derived Cu/ZnO/C Catalysts for Efficient Conversion of Glycerol to Lactic Acid. Catal Lett 154, 1309–1321 (2024). https://doi.org/10.1007/s10562-023-04393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04393-0

Keywords

Navigation