Skip to main content
Log in

Promotion Effect of Microwave-Assisted Prepared Porous Fe–Mn Catalyst on Toluene Removal

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Fe–Mn oxide is widely used for VOCs catalytic oxidation due to its advantages of low cost and easy availability. However, the low-temperature catalytic oxidation activity of Fe–Mn oxide is limited. In order to prepare a porous Fe–Mn oxide for VOCs oxidation with high efficiency and stability at low temperatures, a microwave-assisted oxalate co-precipitation method is used to prepare porous Fe2Mn1-MW catalysts, the physicochemical properties of the prepared porous Fe2Mn1-MW, such as surface structure, element composition, redox performance, oxygen mobility and oxidation activity, are compared with the porous Fe2Mn1 prepared by the conventional oxalate co-precipitation method. The results indicate that the porous Fe2Mn1-MW catalyst with microwave-assisted exhibits higher toluene conversion with a T90% of 213 °C under WHSV of 40,000 ml g−1 h−1. Meanwhile, the porous Fe2Mn1 synthesized by microwave-assisted oxalate co-precipitation method has excellent thermal stability and steam tolerance even under RH of 50 vol% steam atmospheres within 60 h. Characterization results demonstrate that the microwave post-processing can not only enlarge the BET surface area and generate oxygen vacancies derived from interface defects, but also enhance acid properties, redox properties and the oxidation state, thereby leading to the excellent activity and stability of the as-obtained porous Fe2Mn1-MW.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang C, Miao G, Pi Y, Xia Q, Wu J, Li Z, Xiao J (2019) Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem Eng J 370:1128–1153

    Article  CAS  Google Scholar 

  2. Zhu D, Di S, Wu Z, Yao S, Li J (2022) Engineering Pt@MnOx/γ-Al2O3 catalyst with enhanced Pt-MnOx interface to boost plasma catalytic oxidation of o-xylene. J Environ Chem Eng 10:107493

    Article  CAS  Google Scholar 

  3. Wang H, Lu Y, Han Y, Lu C, Wan H, Xu Z, Zheng S (2017) Enhanced catalytic toluene oxidation by interaction between copper oxide and manganese oxide in Cu–O-Mn/γ-Al2O3 catalysts. Appl Surf Sci 420:260–266

    Article  ADS  CAS  Google Scholar 

  4. Guo Y, Wen M, Li G, An T (2021) Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl Catal B 281:119447

    Article  CAS  Google Scholar 

  5. Ma M, Yang R, Jiang Z, Chen C, Liu Q, Albilali R, He C (2021) Fabricating M/Al2O3/cordierite (M = Cr, Mn, Fe Co, Ni and Cu) monolithic catalysts for ethyl acetate efficient oxidation: unveiling the role of water vapor and reaction mechanism. Fuel 303:121244

    Article  CAS  Google Scholar 

  6. Zabar Z, Merabet S, Halim Abdullah A, Khezami L, Bououdina M (2022) Microwave-assisted synthesis of Ag-Cu co-modified TiO2 catalyst for efficient photocatalytic oxidation of M-cresol. Environ Nanotechnol Monit Manag 18:100734

  7. Feng S, Liu J, Gao B (2022) Synergistic mechanism of Cu–Mn–Ce oxides in mesoporous ceramic base catalyst for VOCs microwave catalytic combustion. Chem Eng J 429:132302

    Article  CAS  Google Scholar 

  8. Chen J, Chen X, Xu W, Xu Z, Chen J, Jia H, Chen J (2017) Hydrolysis driving redox reaction to synthesize Mn–Fe binary oxides as highly active catalysts for the removal of toluene. Chem Eng J 330:281–293

    Article  CAS  Google Scholar 

  9. Wang Y, Wang G, Deng W, Han J, Qin L, Zhao B, Guo L, Xing F (2020) Study on the structure-activity relationship of Fe–Mn oxide catalysts for chlorobenzene catalytic combustion. Chem Eng J 395:125172

    Article  CAS  Google Scholar 

  10. Dai Z, Li D, Ao Z, Wang S, An T (2021) Theoretical exploration of VOCs removal mechanism by carbon nanotubes through persulfate-based advanced oxidation processes: adsorption and catalytic oxidation. J Hazard Mater 405:124684

    Article  CAS  PubMed  Google Scholar 

  11. Kim SC, Shim WG (2010) Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B 98:180–185

    Article  CAS  Google Scholar 

  12. Wang Y, Wu J, Wang G, Yang D, Ishihara T, Guo L (2021) Oxygen vacancy engineering in Fe doped akhtenskite-type MnO2 for low-temperature toluene oxidation. Appl Catal B 285:119873

    Article  CAS  Google Scholar 

  13. Gao W, Tang X, Yi H, Jiang S, Yu Q, Xie X, Zhuang R (2023) Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: a review. J Environ Sci 125:112–134

    Article  CAS  Google Scholar 

  14. Wang N, Qiu JE, Wu J, Yuan X, You K, Luo HA (2016) Microwave assisted synthesis of Sn-modified MgAlO as support for platinum catalyst in cyclohexane dehydrogenation to cyclohexene. Appl Catal A Gen 516:9–16

  15. Yi H, Xie X, Song L, Zhao S, Du C, Miao L, Tang X (2022) Promotion of rapid microwave-assisted synthesized porous manganese-cobalt catalyst on low-temperature toluene oxidation. J Environ Chem Eng 10:107086

    Article  CAS  Google Scholar 

  16. Wang P, Zhao J, Zhao Q, Ma X, Du X, Hao X, Tang B, Abudula A, Guan G (2022) Microwave-assisted synthesis of manganese oxide catalysts for total toluene oxidation. J Colloid Interface Sci 607:100–110

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Saqer SM, Kondarides DI, Verykios XE (2011) Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3. Appl Catal B 103:275–286

    Article  CAS  Google Scholar 

  18. Shao S, Li Z, Zhang J, Gao K, Liu Y, Jiao W (2022) Preparation of Ce-MnOx/γ-Al2O3 by high gravity-assisted impregnation method for efficient catalytic ozonation. Chem Eng Sci 248:117246

    Article  CAS  Google Scholar 

  19. Qin L, Li J, Nestle Asamoah E, Zhao B, Chen W, Han J (2023) New porous carbon material derived from carbon microspheres assembled in hollow carbon spheres and its application to toluene adsorption. Langmuir 39:6169–6177

  20. Zhu L, Shen D, Luo KH (2020) A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods. J Hazard Mater 389:122102

    Article  CAS  PubMed  Google Scholar 

  21. Jiang Y, Xu X, Liu B, Zhou C, Wang H, Qiu J, Zeng Z, Ge Y, Li L (2022) Optimal pore size design guided by GCMC molecular simulation for VOCs adsorption. Microporous Mesoporous Mater 341:112081

    Article  CAS  Google Scholar 

  22. Zhang M, Gao Y, Mao Y, Wang W, Sun J, Song Z, Sun J, Zhao X (2023) Enhanced dry reforming of methane by microwave-mediated confined catalysis over Ni-La/AC catalyst. Chem Eng J 451:138616

    Article  CAS  Google Scholar 

  23. Wang Y, Yao C, Cao Y, Zhang C, Tang W (2023) Confined nanoreactor for synthesis of MnCe composite oxide nanowires with enhanced catalytic activity towards aromatic VOCs oxidation. Ceram Int 49:1137–1147

    Article  CAS  Google Scholar 

  24. Tian L, Lv G, Liu M, Lei X, Rao W, Liao L (2022) Reviews: microwave-induced oxidation technology and its applications. Prog Nat Sci Mater Int 32:665–673

    Article  CAS  Google Scholar 

  25. Castaño MH, Molina R, Moreno S (2015) Cooperative effect of the Co–Mn mixed oxides for the catalytic oxidation of VOCs: influence of the synthesis method. Appl Catal A 492:48–59

    Article  Google Scholar 

  26. Qin L, Zhao B, Chen W, Han Y, Wan Y, Liu L, Lu H, Han J (2022) Simultaneous removal of toluene and chlorobenzene in a nonthermal plasma-catalysis reactor packed with Fe1-Mn1/γ-Al2O3. J Clean Prod 363:132611

    Article  CAS  Google Scholar 

  27. Soltan WB, Sun J, Wang W, Song Z, Zhao X, Mao Y, Zhang Z (2022) Discovering the key role of MnO(2) and CeO(2) particles in the Fe(2)O(3) catalysts for enhancing the catalytic oxidation of VOC: synergistic effect of the lattice oxygen species and surface-adsorbed oxygen. Sci Total Environ 819:152844

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Song H, Hu F, Peng Y, Li K, Bai S, Li J (2018) Non-thermal plasma catalysis for chlorobenzene removal over CoMn/TiO2 and CeMn/TiO2: Synergistic effect of chemical catalysis and dielectric constant. Chem Eng J 347:447–454

    Article  CAS  Google Scholar 

  29. Qin L, Zhao B, Chen W, Liu X, Han J (2022) Refluxing-coprecipitation to synthesize Fex−Mny/γ-Al2O3 catalyst for toluene removal in a nonthermal plasma-catalysis reactor. Mol Catal 517:112023

    Article  CAS  Google Scholar 

  30. Guo M, Li K, Zhang H, Min X, Hu X, Guo W, Jia J, Sun T (2020) Enhanced catalytic activity of oxygenated VOC deep oxidation on highly active in-situ generated GdMn(2)O(5)/GdMnO(3) catalysts. J Colloid Interface Sci 578:229–241

    Article  ADS  CAS  PubMed  Google Scholar 

  31. He J, Zheng F, Zhou Y, Li X, Wang Y, Xiao J, Li Y, Chen D, Lu J (2022) Catalytic oxidation of VOCs over 3D@2D Pd/CoMn(2)O(4) nanosheets supported on hollow Al(2)O(3) microspheres. J Colloid Interface Sci 613:155–167

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Qin L, Song J, Chen W, Luo G, Han J (2022) FeMn/Al2O3 as a high-efficient and low-cost catalyst for chlorobenzene removal in a nonthermal plasma-catalysis reactor. Process Saf Environ Prot 163:384–394

    Article  CAS  Google Scholar 

  33. Reddy KHP, Kim BS, Lam SS, Jung SC, Song J, Park YK (2021) Effective toluene oxidation under ozone over mesoporous MnO(x)/gamma-Al(2)O(3) catalyst prepared by solvent deficient method: Effect of Mn precursors on catalytic activity. Environ Res 195:110876

    Article  CAS  PubMed  Google Scholar 

  34. Zuo C, Wu M, Guo Q (2020) The effect of the Ce content on the oxidative dehydrogenation of propane over CrO-CeO2/γ-Al2O3 catalysts. Chin J Chem Eng 28:3035–3043

    Article  CAS  Google Scholar 

  35. Cui J, Liu T, Zhang Q, Wang T, Hou X (2021) Rapid microwave synthesis of Fe3O4-PVP@ZIF-67 as highly effective peroxymonosulfate catalyst for degradation of bisphenol F and its mechanism analysis. Chem Eng J 404:126453

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Technology Innovation Special Foundation of Hubei Province (Grant Nos. 2021BCA151, 2022BEC004 and 2020ZYYD019). We would like to thank Mrs. Jinhui Zhou at the Analytical and Testing Center of Wuhan University of Science and Technology for the help on XPS and TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1172 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Song, J., Qin, W. et al. Promotion Effect of Microwave-Assisted Prepared Porous Fe–Mn Catalyst on Toluene Removal. Catal Lett 154, 1270–1283 (2024). https://doi.org/10.1007/s10562-023-04388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04388-x

Keywords

Navigation