Skip to main content
Log in

Simultaneous Removal of NOx and Toluene on CuMnMgAl Layered Double Oxides (LDO) Derived from Layered Double Hydroxides (LDHs) Precursor

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, pure phase Cu2.5Mn0.5MgAl precursor was synthesized by layered double hydroxides (LDHs) precursor template method. Subsequently, Cu2.5Mn0.5MgAl-LDH is calcined at 500, 600 and 700 ℃ to obtain the corresponding layered double oxides (LDO) catalysts for simultaneous removal of NOx and toluene. The results show that Cu2.5Mn0.5MgAl-500 exhibits the best catalytic performance in both NOx reduction and toluene oxidation reactions and the conversion of NOx and toluene can reach 85% and 88% at 210 ℃, respectively. XRD, SEM, BET, NH3-TPD, H2-TPR, XPS and in situ DRIFT were applied to characterize the prepared catalysts. The obtained Cu2.5Mn0.5MgAl-500 has abundant acid sites, excellent redox capacity and the highest concentration of surface Mn4+ and Cu+ species, which are considered to be the main factors determining its excellent catalytic performance. In addition, Cu2.5Mn0.5MgAl-500 shows superior durability and good tolerance to H2O/SO2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sun L, Cao Q, Hu B, Li J, Hao J, Jing G, Tang X (2011) Synthesis, characterization and catalytic activities of vanadium–cryptomelane manganese oxides in low-temperature NO reduction with NH3. Appl Catal A Gen 393:323–330

    Article  CAS  Google Scholar 

  2. Yan X, Anguille S, Bendahan M, Moulin P (2021) Toluene removal from gas streams by an ionic liquid membrane: experiment and modeling. Chem Eng J 404:127109

    Article  CAS  Google Scholar 

  3. Luo Y, Zheng Y, Zuo J, Feng X, Wang X, Zhang T, Zhang K, Jiang L (2018) Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation. J Hazard Mater 349:119–127

    Article  CAS  PubMed  Google Scholar 

  4. Feng Z, Ren Q, Peng R, Mo S, Zhang M, Fu M, Chen L, Ye D (2019) Effect of CeO2 morphologies on toluene catalytic combustion. Catal Today 332:177–182

    Article  CAS  Google Scholar 

  5. Zhao S, Li K, Jiang S, Li J (2016) Pd–Co based spinel oxides derived from pd nanoparticles immobilized on layered double hydroxides for toluene combustion. Appl Catal B Environ 181:236–248

    Article  CAS  Google Scholar 

  6. Li X, Li K, Peng Y, Li X, Zhang Y, Wang D, Chen J, Li J (2018) Interaction of phosphorus with a FeTiOx catalyst for selective catalytic reduction of NOx with NH3: Influence on surface acidity and SCR mechanism. Chem Eng J 347:173–183

    Article  Google Scholar 

  7. Guo Y, Wen M, Li G, An T (2021) Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl Catal B Environ 281:119447

    Article  CAS  Google Scholar 

  8. Zhang Y, Xiong Z, Yang Q, Zhou F, Lu W, Shi H (2022) Influence of copper doping on the low-medium NH3-SCR activity of magnetic W/Fe2O3 catalyst: its synergetic effect of glucose dosage. J Environ Chem Eng 10:108694

    Article  CAS  Google Scholar 

  9. Deng W, Tang Q, Huang S, Zhang L, Jia Z, Guo L (2020) Low temperature catalytic combustion of chlorobenzene over cobalt based mixed oxides derived from layered double hydroxides. Appl Catal B Environ 278:119336

    Article  CAS  Google Scholar 

  10. Zhao L, Huang Y, Zhang J, Jiang L, Wang Y (2020) Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range. Chem Eng J 397:125419

    Article  CAS  Google Scholar 

  11. Yan Q, Nie Y, Yang R, Cui Y, O’Hare D, Wang Q (2017) Highly dispersed CuyAlOx mixed oxides as superior low-temperature alkali metal and SO2 resistant NH3-SCR catalysts. Appl Catal A Gen 538:37–50

    Article  CAS  Google Scholar 

  12. Wu X, Meng H, Du Y, Liu J, Hou B, Xie X (2019) Fabrication of highly dispersed Cu-based oxides as desirable NH3-SCR catalysts via employing CNTs to decorate the CuAl-layered double hydroxides. ACS Appl Mater Inter 11:32917–32927

    Article  CAS  Google Scholar 

  13. Kovanda F (2001) Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combustion. Appl Clay Sci 18:71–80

    Article  Google Scholar 

  14. Xu G, Guo X, Cheng X, Yu J, Fang B (2021) A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance. Nanoscale 13:7052–7080

    Article  CAS  PubMed  Google Scholar 

  15. Kim SC, Shim WG (2010) Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B Environ 98:180–185

    Article  CAS  Google Scholar 

  16. Yan Q, Chen S, Qiu L, Gao Y, O’Hare D, Wang Q (2018) The synthesis of CuyMnzAl1-zOx mixed oxide as a low-temperature NH3-SCR catalyst with enhanced catalytic performance. Dalton T 47:2992–3004

    Article  CAS  Google Scholar 

  17. Aguilera DA, Perez A, Molina R, Moreno S (2011) Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Appl Catal B Environ 104:144–150

    Article  CAS  Google Scholar 

  18. Mo S, Li S, Li W, Li J, Chen J, Chen Y (2016) Excellent low temperature performance for total benzene oxidation over mesoporous CoMnAl composited oxides from hydrotalcites. J Mater Chem A 4:8113–8122

    Article  CAS  Google Scholar 

  19. Xue T, Li R, Zhang Z, Gao Y, Wang Q (2020) Preparation of MnO2 decorated Co3Fe1Ox powder/monolithic catalyst with improved catalytic activity for toluene oxidation. J Environ Sci 96:194–203

    Article  CAS  Google Scholar 

  20. Wu X, Liu J, Liu X, Wu X, Du Y (2022) Fabrication of carbon doped Cu-based oxides as superior NH3-SCR catalysts via employing sodium dodecyl sulfonate intercalating CuMgAl-LDH. J Catal 407:265–280

    Article  CAS  Google Scholar 

  21. Chakraborty S, Kumar M, Suresh K, Pugazhenthi G (2014) Influence of organically modified NiAl layered double hydroxide (LDH) loading on the rheological properties of poly (methyl methacrylate) (PMMA)/LDH blend solution. Powder Technol 256:196–203

    Article  CAS  Google Scholar 

  22. Wang R, Wu X, Zou C, Li X, Du Y (2018) NOx removal by selective catalytic reduction with ammonia over a hydrotalcite-derived NiFe mixed oxide. Catal 8:384

    Google Scholar 

  23. Li H, Zhu G, Yang Z, Wang Z, Liu ZH (2010) Preparation and capacitance property of MnO2-pillared Ni2+-Fe3+ layered double hydroxides nanocomposite. J Colloid Interf Sci 345:228–233

    Article  CAS  ADS  Google Scholar 

  24. Chen L, Li R, Li Z, Yuan F, Niu X, Zhu Y (2017) Effect of Ni doping in NixMn1−xTi10 (x = 0.1–0.5) on activity and SO2 resistance for NH3-SCR of NO studied with in situ DRIFTS. Catal Sci Technol 7:3243–3257

    Article  CAS  Google Scholar 

  25. Hou B, Du Y, Liu X, Ci C, Wu X, Xie X (2019) Tunable preparation of highly dispersed NixMn-LDO catalysts derived from NixMn-LDHs precursors and application in low-temperature NH3-SCR reactions. RSC Adv 9:24377–24385

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Du Y, Liu J, Li X, Liu L, Wu X (2020) SCR performance enhancement of NiMnTi mixed oxides catalysts by regulating assembling methods of LDHs-Based precursor. Appl Organomet Chem 34:e5510

    Article  CAS  Google Scholar 

  27. Wu X, Feng Y, Du Y, Liu X, Zou C, Li Z (2019) Enhancing DeNOx performance of CoMnAl mixed metal oxides in low-temperature NH3-SCR by optimizing layered double hydroxides (LDHs) precursor template. Appl Surf Sci 467:802–810

    Article  ADS  Google Scholar 

  28. Tang W, Wu X, Li S, Shan X, Liu G, Chen Y (2015) Co-nanocasting synthesis of mesoporous Cu–Mn composite oxides and their promoted catalytic activities for gaseous benzene removal. Appl Catal B Environ 162:110–121

    Article  CAS  Google Scholar 

  29. Gélin P, Primet M (2002) Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal B Environ 39:1–37

    Article  Google Scholar 

  30. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Yan X, Hu X, Feng R, Zhou M, Cui W (2018) Development of zeolitic imidazolate framework-67 functionalized Co-Al LDH for CO2 adsorption. Colloids Surface A 552:16–23

    Article  CAS  Google Scholar 

  32. Zhao K, Meng J, Lu J, He Y, Huang H, Tang Z, Zhen X (2018) Sol-gel one-pot synthesis of efficient and environmentally friendly iron-based catalysts for NH3-SCR. Appl Surf Sci 445:454–461

    Article  CAS  ADS  Google Scholar 

  33. Fang C, Zhang D, Cai S, Zhang L, Huang L, Li H, Maitarad P, Shi L, Gao R, Zhang J (2013) Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Nanoscale 5:9199–9207

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Xiong S, Huang N, Peng Y, Chen J, Li J (2021) Balance of activation and ring-breaking for toluene oxidation over CuO-MnOx bimetallic oxides. J Hazard Mater 415:125637

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z, Fan C, Pang L, Ming S, Liu P, Zhu D, Wang J, Cai X, Chen H, Lai Y, Li T (2018) Direct synthesis of submicron Cu-SAPO-34 as highly efficient and robust catalyst for selective catalytic reduction of NO by NH3. Appl Surf Sci 448:671–680

    Article  CAS  ADS  Google Scholar 

  36. KaráskováK ObalováL, Jirátová K, Kovanda F (2010) Effect of promoters in Co–Mn–Al mixed oxide catalyst on N2O decomposition. Chem Eng J 160:480–487

    Article  Google Scholar 

  37. He Z, Lin H, He P, Yuan Y (2011) Effect of boric oxide doping on the stability and activity of a Cu–SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol. J Catal 277:54–63

    Article  CAS  Google Scholar 

  38. Tang X, Li J, Sun L, Hao J (2010) Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Appl Catal B Environ 99:156–162

    Article  CAS  Google Scholar 

  39. Wu Y, Lu Y, Song C, Ma Z, Xing S, Gao Y (2013) A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of o-xylene. Catal Today 201:32–39

    Article  CAS  Google Scholar 

  40. Chen S, Vasiliades M A, Yan Q, Yang G, Du X, Zhang C, Li Y, Zhu T, Wang Q, Efstathiou A M (2020) Remarkable N2-selectivity enhancement of practical NH3-SCR over Co0.5Mn1Fe0.25Al0.75Ox-LDO: The role of Co investigated by transient kinetic and DFT mechanistic studies. Appl Catal B Environ 277:119186

  41. Gao C, Xiao B, Shi JW, He C, Wang B, Ma D, Cheng Y, Niu C (2019) Comprehensive understanding the promoting effect of Dy-doping on MnFeOx nanowires for the low-temperature NH3-SCR of NOx: an experimental and theoretical study. J Catal 380:55–67

    Article  CAS  Google Scholar 

  42. Liu F, He H, Zhang C, Feng Z, Zheng L, Xie Y, Hu T (2010) Selective catalytic reduction of NO with NH3 over iron titanate catalyst: catalytic performance and characterization. Appl Catal B Environ 96:408–420

    Article  CAS  Google Scholar 

  43. Li Q, Yang H, Qiu F, Zhang X (2011) Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal. J Hazard Mater 192:915–921

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Yu T, Hao T, Fan D, Wang J, Shen M, Li W (2014) Recent NH3-SCR mechanism research over Cu/SAPO-34 catalyst. J Phys Chem C 118:6565–6575

    Article  CAS  Google Scholar 

  45. Wei Y, Fan H, Wang R (2018) Transition metals (Co, Zr, Ti) modified iron-samarium oxide as efficient catalysts for selective catalytic reduction of NOx at low-temperature. Appl Surf Sci 459:63–73

    Article  CAS  ADS  Google Scholar 

  46. Wang Z, Lan J, Haneda M, Liu Z (2021) Selective catalytic reduction of NOx with NH3 over a novel Co-Ce-Ti catalyst. Catal Today 376:222–228

    Article  CAS  Google Scholar 

  47. Yang W, Su ZA, Xu Z, Yang W, Peng Y, Li J (2020) Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates. Appl Catal B Environ 260:118150

    Article  CAS  Google Scholar 

  48. Ye L, Lu P, Chen X, Fang P, Peng Y, Li J, Huang H (2020) The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. Appl Catal B Environ 277:119257

    Article  CAS  Google Scholar 

  49. Xu W, He H, Yu Y (2009) Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. J Phys Chem C 113:4426–4432

    Article  CAS  Google Scholar 

  50. Ma L, Seo CY, Chen X, Sun K, Schwank JW (2018) Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust. Appl Catal B Environ 222:44–58

    Article  CAS  Google Scholar 

  51. Chen X, Chen X, Cai S, Yu E, Chen J, Jia H (2019) MnOx/Cr2O3 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnOx as high stable catalyst for toluene oxidation. Appl Surf Sci 475:312–324

    Article  CAS  ADS  Google Scholar 

  52. Chen J, Chen X, Xu W, Xu Z, Chen J, Jia H, Chen J (2017) Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene. Chem Eng J 330:281–293

    Article  CAS  Google Scholar 

  53. Sun H, Liu Z, Chen S, Quan X (2015) The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chem Eng J 270:58–65

    Article  CAS  Google Scholar 

  54. Zhao Y, Zhao B, Zhuo Y, Chen C, Xu X (2012) A study of the mechanism of iron-based sulfate catalyst for selective catalytic reduction of NO with NH3. Asia Pac J Chem Eng 7:581–589

    Article  CAS  Google Scholar 

  55. Long R, Yang R (2000) Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J Catal 194:80–90

    Article  CAS  Google Scholar 

  56. Zhang X, Ma ZA, Song Z, Zhao H, Liu W, Zhao M, Zhao J (2019) Role of cryptomelane in surface-adsorbed oxygen and Mn chemical valence in MnOx during the catalytic oxidation of toluene. J Phys Chem C 123:17255–17264

    Article  CAS  Google Scholar 

  57. Li Z, Gao Y, Wang Q (2022) The influencing mechanism of NH3 and NOx addition on the catalytic oxidation of toluene over Mn2Cu1Al1Ox catalyst. J Clean Prod 348:131152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51978436, 22272116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, F., Liu, L., Wu, X. et al. Simultaneous Removal of NOx and Toluene on CuMnMgAl Layered Double Oxides (LDO) Derived from Layered Double Hydroxides (LDHs) Precursor. Catal Lett 154, 1184–1200 (2024). https://doi.org/10.1007/s10562-023-04384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04384-1

Keywords

Navigation