Skip to main content
Log in

Enhanced Redox Ability of LaCoO3 Catalysts by Cu Doping in Methane Combustion

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CH4 combustion is one of the effective ways to reduce atmospheric lean CH4. Herein, a series of La-Co-Cu-O catalysts were successfully prepared by sol–gel method and applied to CH4 combustion. The doping of Cu could improve the catalytic activity of LaCoO3 catalyst. Among the samples, La0.85Cu0.15CoO3 and LaCu0.15Co0.85O3 with the same Cu doping amount exhibited better catalytic performance. Compared with LaCu0.15Co0.85O3, La0.85Cu0.15CoO3 catalyst with better redox ability and stronger adsorption capacity for CH4 and O2, exhibited higher reactivity in CH4 combustion. It was proposed that the coexistence of exposed dispersed Co3O4 particles and Cu ions in the system of La0.85Cu0.15CoO3 could lead to relatively better redox ability and stronger adsorption capacity for CH4 combustion. The La0.85Cu0.15CoO3 is proved to be an extremely valuable and potential catalyst for CH4 combustion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu C-G, Zhang W, Yan K-F, Cai J, Chen Z-Y, Li X-S (2022). Chem Eng Sci. https://doi.org/10.1016/j.ces.2021.117266

    Article  Google Scholar 

  2. Chen L, Qi Z, Zhang S, Su J, Somorjai GA (2020). Catalysts. https://doi.org/10.3390/catal10080858

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cui X, Li H, Wang Y, Hu Y, Hua L, Li H, Han X, Liu Q, Yang F, He L, Chen X, Li Q, Xiao J, Deng D, Bao X (2018) Chem 4:1902–1910. https://doi.org/10.1016/j.chempr.2018.05.006

    Article  CAS  Google Scholar 

  4. He X, Wang Y, Li K, Wang H, Jiang L, Yuan K, Zheng Y (2022). J CO2 Util. https://doi.org/10.1016/j.jcou.2022.102124

    Article  Google Scholar 

  5. Kang H-S, Lee DH, Kim K-T, Jo S, Pyun S, Song Y-H, Yu S (2016) Fuel Process Technol 148:209–216. https://doi.org/10.1016/j.fuproc.2016.02.028

    Article  CAS  Google Scholar 

  6. Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C, Meng X, Yang H, Mesters C (2020) Science 367:193–197. https://doi.org/10.1126/science.aaw1108

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Yang Z, Zheng Y, Li K, Wang Y, Wang Y, Wang H, Wang Y, Jiang L, Zhu X, Wei Y (2021). Chem Eng Sci. https://doi.org/10.1016/j.ces.2020.116085

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kholod N, Evans M, Pilcher RC, Roshchanka V, Ruiz F, Cote M, Collings R (2020) J Clean Prod 256:120489. https://doi.org/10.1016/j.jclepro.2020.120489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu W, Lan J, Guo Y, Cao X-M, Hu P (2016) ACS Catal 6:5508–5519. https://doi.org/10.1021/acscatal.6b01080

    Article  CAS  Google Scholar 

  10. Murata K, Kosuge D, Ohyama J, Mahara Y, Yamamoto Y, Arai S, Satsuma A (2019) ACS Catal 10:1381–1387. https://doi.org/10.1021/acscatal.9b04524

    Article  CAS  Google Scholar 

  11. Zheng Y, Wang C, Li J, Zhong F, Xiao Y, Jiang L (2020) ACS Appl Nano Mater 3:9470–9479. https://doi.org/10.1021/acsanm.0c02075

    Article  CAS  Google Scholar 

  12. Wang Z, Lin J, Xu H, Zheng Y, Xiao Y, Zheng Y (2021) ACS Appl Nano Mater 4:11920–11930. https://doi.org/10.1021/acsanm.1c02487

    Article  CAS  Google Scholar 

  13. Dai Q, Zhu Q, Lou Y, Wang X (2018) J Catal 357:29–40. https://doi.org/10.1016/j.jcat.2017.09.022

    Article  CAS  Google Scholar 

  14. Ding Y, Wang S, Zhang L, Lv L, Gao Y, Wang S (2020). Catal Commun. https://doi.org/10.1016/j.catcom.2020.106084

    Article  Google Scholar 

  15. Qu P, Wang S, Hu W, Wu Y, Chen J, Zhang G, Shen P, Chen Y, Zhong L (2020). Catal Commun. https://doi.org/10.1016/j.catcom.2019.105900

    Article  Google Scholar 

  16. Feng X, Jiang L, Li D, Tian S, Zhu X, Wang H, He C, Li K (2022). J Energy Chem. https://doi.org/10.1016/j.jechem.2022.08.001

    Article  Google Scholar 

  17. Bhavani AG, Kim WY, Lee JS (2013) ACS Catal 3:1537–1544. https://doi.org/10.1021/cs400245m

    Article  CAS  Google Scholar 

  18. Zhang J, Tan D, Meng Q, Weng X, Wu Z (2015) Appl Catal B 172–173:18–26. https://doi.org/10.1016/j.apcatb.2015.02.006

    Article  CAS  Google Scholar 

  19. Zhu X, Li K, Neal L, Li F (2018) ACS Catal 8:8213–8236. https://doi.org/10.1021/acscatal.8b01973

    Article  CAS  Google Scholar 

  20. Zhao K, He F, Huang Z, Wei G, Zheng A, Li H, Zhao Z (2017) Korean J Chem Eng 34:1651–1660. https://doi.org/10.1007/s11814-016-0329-6

    Article  CAS  Google Scholar 

  21. Wang Y, Ren J, Wang Y, Zhang F, Liu X, Guo Y, Lu G (2008) J Phys Chem C 112:15293–15298. https://doi.org/10.1021/jp8048394

    Article  CAS  Google Scholar 

  22. Jiang L, Li D, Deng G, Lu C, Huang L, Li Z, Xu H, Zhu X, Wang H, Li K (2023). Chem Eng J. https://doi.org/10.1016/j.cej.2022.141054

    Article  Google Scholar 

  23. Wang W, Zhou W, Li W, Xiong X, Wang Y, Cheng K, Kang J, Zhang Q, Wang Y (2020). Appl Catal B. https://doi.org/10.1016/j.apcatb.2020.119142

    Article  Google Scholar 

  24. Lee YN, Lago RM, Fierro JLG, Cortés V, Sapiña F, Martínez E (2001) Appl Catal A 207:17–24. https://doi.org/10.1016/S0926-860X(00)00610-4

    Article  CAS  Google Scholar 

  25. Lisi L, Bagnasco G, Ciambelli P, De Rossi S, Porta P, Russo G, Turco M (1999) J Solid State Chem 146:176–183. https://doi.org/10.1006/jssc.1999.8327

    Article  CAS  ADS  Google Scholar 

  26. Glisenti A, Pacella M, Guiotto M, Natile M, Canu P (2016) Appl Catal B 180:94–105. https://doi.org/10.1016/j.apcatb.2015.06.017

    Article  CAS  Google Scholar 

  27. Kucharczyk B, Tylus W (2004) Catal Today 90:121–126. https://doi.org/10.1016/j.cattod.2004.04.016

    Article  CAS  Google Scholar 

  28. Bhatt MD, Lee JY (2020) Energy Fuels 34:6634–6695. https://doi.org/10.1021/acs.energyfuels.0c00953

    Article  CAS  Google Scholar 

  29. de Lira LDC, Lemos IP, Gomes RS, Rodrigues LMTS, Fréty RT, Resini C, Junior RBS, Brandão ST (2022). Catal Lett. https://doi.org/10.1007/s10562-022-04127-8

    Article  Google Scholar 

  30. Lee M, Lim HS, Kim Y, Lee JW (2020) Energy Convers Manag 207:112507. https://doi.org/10.1016/j.enconman.2020.112507

    Article  CAS  Google Scholar 

  31. Dong C, Sun H, Zhou Y, Zhan H, Wang G, Liu W, Bi S, Ma B (2022) J Environ Chem Eng 10:107718. https://doi.org/10.1016/j.jece.2022.107718

    Article  CAS  Google Scholar 

  32. Natile MM, Ugel E, Maccato C, Glisenti A (2007) Appl Catal B 72:351–362. https://doi.org/10.1016/j.apcatb.2006.11.011

    Article  CAS  Google Scholar 

  33. Xie X, Ni C, Lin Z, Wu D, Sun X, Zhang Y, Wang B, Du W (2020). Chem Eng J. https://doi.org/10.1016/j.cej.2020.125205

    Article  Google Scholar 

  34. Zhao Y, Gu Z, Li D, Yuan J, Jiang L, Xu H, Lu C, Deng G, Li M, Xiao W, Li K (2022). Fuel. https://doi.org/10.1016/j.fuel.2022.124399

    Article  Google Scholar 

  35. Yuan K, Wang Y, Li K, Zhu X, Wang H, Jiang L, Wei Y, Shan S, Zheng Y (2022) ACS Appl Mater Interfaces 14:39004–39013. https://doi.org/10.1021/acsami.2c12700

    Article  CAS  PubMed  Google Scholar 

  36. Chen J, Shi W, Zhang X, Arandiyan H, Li D, Li J (2011) Environ Sci Technol 45:8491–8497. https://doi.org/10.1021/es201659h

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Ao R, Ma L, Guo Z, Liu H, Yang J, Yin X, Pan Q (2021) Fuel 305:121617. https://doi.org/10.1016/j.fuel.2021.121617

    Article  CAS  Google Scholar 

  38. Wang F, Gu W, Chen J, Huang Q, Han M, Wang G, Ji G (2022) J Mater Sci Technol 105:92–100. https://doi.org/10.1016/j.jmst.2021.06.058

    Article  CAS  Google Scholar 

  39. Lim HS, Lee M, Kang D, Lee JW (2018) Int J Hydrogen Energy 43:20580–20590. https://doi.org/10.1016/j.ijhydene.2018.09.067

    Article  CAS  Google Scholar 

  40. Zhang C, Wang C, Hua W, Guo Y, Lu G, Gil S, Giroir-Fendler A (2016) Appl Catal B 186:173–183. https://doi.org/10.1016/j.apcatb.2015.12.052

    Article  CAS  Google Scholar 

  41. Wang Y, Aghamohammadi S, Li D, Li K, Farrauto R (2019) Appl Catal B 244:438–447. https://doi.org/10.1016/j.apcatb.2018.11.066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Project Nos. 22268026, 22002125 and 21706108), the Yunnan Fundamental Research Projects (Nos. 202301AT070438, 2018FD032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhao Wang or Yane Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 571 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Wang, Y., Li, K. et al. Enhanced Redox Ability of LaCoO3 Catalysts by Cu Doping in Methane Combustion. Catal Lett 154, 1126–1133 (2024). https://doi.org/10.1007/s10562-023-04366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04366-3

Keywords

Navigation