Skip to main content
Log in

Theoretical Substantiation of the Possibility of Predicting the Catalytic Activity of Carbon Nanotubes in the Diels–Alder Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the paper we consider the development of an algorithm for predicting the catalytic activity of porous materials based on the concept of transition state shape selectivity (TSSS). We evaluated catalytic activity of single-wall carbon nanotubes (SWCNT) in the Diels–Alder reaction on example of interaction cyclopentadiene with acrylonitrile, maleic anhydride, and piperylene with ethylene. We have viewed the stabilization of transition states (TS) on the surface of nanotubes of various diameters. As a quantitative value of TS stabilization energy, we applied the calculated value of the adsorption energy of TS with frozen structure on SWCNT, which was found using Material Studio 8.0 program.

It is shown that the dependence of the adsorption energy on the diameter of the nanotubes has an extremum for all the considered TS, and the maximum adsorption energy is achieved when the TS is placed inside a tube of a certain diameter. Obviously, this diameter can be assumed optimal for achieving the greatest catalytic effect. Depending on the size of the TS of the considered reactions, the optimal diameter of the nanotubes is 9–11 Å. Also, we found, that for the reaction cyclopentadiene with acrylonitrile, the difference between linear dimensions of TS for endo- and exo-isomers formation is noticeable, which suggests the possibility of selective catalysis by SWCNT.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. American Chemical Society Report (2020) Technology Vision 2020. https://www.energy.gov/sites/default/files/2013/11/f4/chem_vision.pdf

  2. Fechete I, Wang Y, Védrine JC (2012) The past, present and future of heterogeneous catalysis. Catal Today. https://doi.org/10.1016/j.cattod.2012.04.003

    Article  Google Scholar 

  3. Schlӧgl R (2015) Heterogeneous catalysis. Angew Chem Int Ed. https://doi.org/10.1002/anie.201410738

    Article  Google Scholar 

  4. Planeix JM, Coustel N, Coq B et al (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc. https://doi.org/10.1021/ja00096a076

    Article  Google Scholar 

  5. Weitkamp J, Puppe L (1999) Catalysis and zeolites: fundamentals and applications. Springer, Berlin

    Book  Google Scholar 

  6. Weitkamp J (2000) Zeolites and catalysis. Solid State Ion. https://doi.org/10.1016/S0167-2738(00)00632-9

    Article  Google Scholar 

  7. Weitkamp J (1991) New directions in zeolite catalysis. Stud Surf Sci Catal. https://doi.org/10.1016/S0167-2991(08)62897-9

    Article  Google Scholar 

  8. Jo D, Park GT, Ryu T, Hong SB (2019) Economical synthesis of high-silica LTA zeolites: a step forward in developing a new commercial NH3-SCR catalyst. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2018.10.042

    Article  Google Scholar 

  9. Li Y, Cao H, Yu J (2018) Toward a new era of designed synthesis of nanoporous zeolitic materials. ACS Nano. https://doi.org/10.1021/acsnano.8b02625

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kerstens D, Smeyers B, Van Waeyenberg J et al (2020) State of the art and perspectives of hierarchical zeolites: practical overview of synthesis methods and use in catalysis. Adv Mater. https://doi.org/10.1002/adma.202004690

    Article  PubMed  Google Scholar 

  11. Weisz PB, Frilette VJ (1960) Intracrystalline and molecular-shape-selective catalysis by zeolite salts. J Phys Chem. https://doi.org/10.1021/j100832a513

    Article  Google Scholar 

  12. Weisz PB (1980) Molecular shape selective catalysis. Pure Appl Chem. https://doi.org/10.1351/pac198052092091

    Article  Google Scholar 

  13. Chen NY (1996) Shape selective catalysis in industrial applications, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  14. Smit B, Maesen TLM (2008) Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem Rev. https://doi.org/10.1021/cr8002642

    Article  PubMed  Google Scholar 

  15. Smit B, Maesen TLM (2008) Towards a molecular understanding of shape selectivity. Nature. https://doi.org/10.1038/nature06552

    Article  PubMed  PubMed Central  Google Scholar 

  16. Csicsery SM (1986) Catalysis by shape selective zeolites – science and technology. Pure Appl Chem. https://doi.org/10.1351/pac198658060841

    Article  Google Scholar 

  17. Weisz PB (1965) Molekularsiebe als selektiv-katalysatoren Erdoel und Kohle 18:525

    CAS  Google Scholar 

  18. Haag WO, Lago RM, Weisz PB (1981) Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite. Faraday Discuss Chem Soc. https://doi.org/10.1039/DC9817200317

    Article  Google Scholar 

  19. Tatsumi T, Nakamura M, Yuasa K, Tominaga H (1991) Shape selectivity as a function of pore size in epoxidation of alkenes with supported titanium catalysts. Catal Lett. https://doi.org/10.1007/BF00772079

    Article  Google Scholar 

  20. Choudhary VR, Akolekar DB (1990) Evaluation of sorbate/reactant shape-selectivity of zeolites by GC pulse techniques. J Mol Catal. https://doi.org/10.1016/0304-5102(90)85268-m

    Article  Google Scholar 

  21. Niwa M, Senoh N, Hibino T, Nakatsuka Y, Murakami Y (1994) Reactant shape-selectivity for cracking of linear paraffin on HZSM-5 modified by CVD of silicon alkoxide: a strong dependence upon the reaction temperature. Stud Surf Sci Catal. https://doi.org/10.1016/s0167-2991(08)63253-x

    Article  Google Scholar 

  22. Hereijgers BPC, Bleken F, Nilsen MH et al (2009) Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts. J Catal. https://doi.org/10.1016/j.jcat.2009.03.009

    Article  Google Scholar 

  23. Amelse JA (2019) On the mechanism for ethyl transfer and removal from ethylbenzene during commercial xylene isomerization. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2018.12.005

    Article  Google Scholar 

  24. Poursaeidesfahani A, de Lange MF, Khodadadian F et al (2017) Product shape selectivity of MFI-type, MEL-type, and BEA-type zeolites in the catalytic hydroconversion of heptane. J Catal. https://doi.org/10.1016/j.jcat.2017.07.005

    Article  Google Scholar 

  25. Klemm E, Emig G (1997) A method for the determination of diffusion coefficients in product-shape-selective catalysis on zeolites under reaction conditions. Chem Eng Sci. https://doi.org/10.1016/s0009-2509(97)00175-9

    Article  Google Scholar 

  26. Clark LA, Sierka M, Sauer J (2004) Computational elucidation of the transition state shape selectivity phenomenon. J Am Chem Soc. https://doi.org/10.1021/ja0381712

    Article  PubMed  Google Scholar 

  27. Yeom YH, Shim SC (2002) The transition state shape-selective aromatic alkylation over MnAPO-11 molecular sieve catalysts. J Mol Catal A Chem. https://doi.org/10.1016/s1381-1169(01)00413-7

    Article  Google Scholar 

  28. Brechtelsbauer C, Emig G (1997) Shape selective methylation of biphenyl within zeolites: an example of transition state selectivity. Appl Catal A-Gen. https://doi.org/10.1016/S0926-860X(96)00382-1

    Article  Google Scholar 

  29. Mirth G, Cejka J, Nusterer E, Lercher JA (1994) Transition state and diffusion controlled shape selectivity in the formation and reaction of xylenes. Stud Surf Sci Catal. https://doi.org/10.1016/S0167-2991(08)63268-1

    Article  Google Scholar 

  30. Degnan TF (2003) The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. J Catal. https://doi.org/10.1016/S0021-9517(02)00105-7

    Article  Google Scholar 

  31. Ravon U, Savonnet M, Aguado S et al (2010) Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2009.06.008

    Article  Google Scholar 

  32. Wang C, Huang X, Zhu Y et al (2020) Understanding HZSM-5’s shape-selectivity improvement through tiny autonomous dealumination. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2020.110581

    Article  Google Scholar 

  33. Li N, Han M, Xue Z et al (2022) Excellent catalytic performance of Cu+ modified HZSM-5 to produce para-xylene via the toluene methylation reaction: high catalytic active site combining with channel shape selectivity. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2022.111910

    Article  Google Scholar 

  34. Yan P, Bryant G, Li MMJ et al (2020) Shape selectivity of zeolite catalysts for the hydrodeoxygenation of biocrude oil and its model compounds. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2020.110561

    Article  Google Scholar 

  35. Kupova OY, Vakulin IV, Talipov RF (2013) Ab initio study of 1,3-dioxanes formation from formaldehyde dimer and alkenes. Comput Theor Chem. https://doi.org/10.1016/j.comptc.2013.02.024

    Article  Google Scholar 

  36. Kupova OY, Vakulin IV, Talipov RF, Morozkin ND, Talipova GR (2013) Theoretical investigation of the role of formaldehyde dimers in the Prins reaction. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-013-0590-1

    Article  Google Scholar 

  37. Andreev RV, Beregovaya IV, Shchegoleva LN (2022) Fragmentation of intermediate radical anions determines the main features of the hydrodefluorination of isomeric perfluoroxylenes. Quantum chemical substantiation. J Fluor Chem. https://doi.org/10.1016/j.jfluchem.2022.109976

    Article  Google Scholar 

  38. Xie J, Zhang J, Hase WL (2015) Is there hydrogen bonding for gas phase SN2 pre-reaction complexes? Int J Mass Spectrom. https://doi.org/10.1016/j.ijms.2014.04.002

    Article  Google Scholar 

  39. Piétri N, Coupeaud A, Aycard J-P, Couturier-Tamburelli I (2009) Cyanoacetylenic complexes as pre-reactional species leading to the HC7N synthesis. Part I: experimental and theoretical identification of the HC3N:C4H2 complexes. Chem Phys. https://doi.org/10.1016/j.chemphys.2008.11.027

    Article  Google Scholar 

  40. Lording WJ, Fallon T, Sherburn MS, Paddon-Row MN (2020) The simplest Diels-Alder reactions are not endoselective. Chem Sci. https://doi.org/10.1039/d0sc04553e

    Article  PubMed  PubMed Central  Google Scholar 

  41. James NC, Um JM, Padias AB, Hall HK Jr, Houk KN (2013) Computational investigation of the competition between the concerted Diels-Alder reaction and formation of diradicals in reactions of acrylonitrile with non-polar dienes. J Org Chem. https://doi.org/10.1021/jo400900x

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gholami MR, Talebi BA, Khalili M (2003) A study of solvent effects on the stereoselectivity of Diels-Alder reactions through molecular surface electrostatic potentials. Tetrahedron Lett. https://doi.org/10.1016/s0040-4039(03)01777-5

    Article  Google Scholar 

  43. Levandowski BJ, Hamlin TA, Bickelhaupt FM, Houk KN (2017) The Role of orbital interactions and activation strain (distortion energies) on reactivities in the normal and inverse electron-demand cycloadditions of strained and unstrained cycloalkenes. J Org Chem. https://doi.org/10.1021/acs.joc.7b01673

    Article  PubMed  Google Scholar 

  44. Liu J, Yin Y, Fu X-Z, Luo J-L (2019) Stability of C3–C6 carbonium ions inside zeolites: a first principles study. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144148

    Article  Google Scholar 

  45. Boronat M, Corma A (2008) Are carbenium and carbonium ions reaction intermediates in zeolite-catalyzed reactions? Appl Catal Gen. https://doi.org/10.1016/j.apcata.2007.09.050

    Article  Google Scholar 

  46. Zhenga A, Deng F, Liu S-B (2011) Regioselectivity of carbonium ion transition states in zeolites. Catal Today. https://doi.org/10.1016/j.cattod.2010.10.014

    Article  Google Scholar 

  47. Keil FJ (2010). In: Dunne LJ, Manos G (eds) Adsorption and phase behaviour in nanochannels and nanotubes. Springer, Dordrecht

    Google Scholar 

  48. Vakulin IV, Talipov RF, Pasko PA, Talipova GR, Kupova OYu (2018) Features of formation transition states of 1,3-dioxanes by Prins reaction in the pores of synthetic zeolites A and carbon nanotubes. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2018.05.001

    Article  Google Scholar 

  49. Vakulin IV, Pas’ko PA, Talipova RF, Talipova GR, Kupova OYu, (2019) Influence of the pore diameter in zeolites on the activation energy of formation of 4-Alkyl-1,3-dioxanes in the prins reaction. Kinet Catal. https://doi.org/10.1134/S0023158419030157

    Article  Google Scholar 

  50. Vakulin IV, Kupova OY, Talypova GR, Latypova ER, Talypov RF (2014) Theoretical aspects of catalytic effect of zeolites and carbon nanotubes in Prins reaction. Bulletin of Bashkir University 19:1164–1166

    Google Scholar 

  51. Pasko PA, Vakulin IV, Talipov RF (2017) The modelling by the methods of molecular dynamics of influence of zeolites with (Na+x(H2O)y)[AlaSibOc], CaX[H2O]yALaSibOc, SiXOY framework types on formation of 4-alkyl-1,3-dioxanes by Prins reaction. Bull Bashkir Univ 22:966–970

    Google Scholar 

  52. Cope AC, Hardy EM (1940) The introduction of substituted vinyl groups. V. A rearrangement involving the migration of an allyl group in a three-carbon system. J Am Chem Soc. https://doi.org/10.1021/ja01859a055

    Article  Google Scholar 

  53. Claisen L (1912) Über Umlagerung von Phenol-allyläthern in C-Allyl-phenole. Ber. https://doi.org/10.1002/cber.19120450348

    Article  Google Scholar 

  54. Diels O, Alder K (1928) Synthesen in der hydroaromatischen Reihe. Justus Liebigs Ann Chem. https://doi.org/10.1002/jlac.19284600106

    Article  Google Scholar 

  55. Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G (2002) The Diels-Alder reaction in total synthesis. Angew Chem Int Ed. https://doi.org/10.1002/1521-3773(20020517)41:10%3c1668::AID-ANIE1668%3e3.0.CO;2-Z

    Article  Google Scholar 

  56. Ahraminejad M, Ghiasi R, Mohtat B, Ahmadi R (2021) Substituent effect in the [2 + 4] Diels−Alder cycloaddition reactions of anthracene with C2X2 (X=H, F, Cl, Me): a computational investigation. J Struc Chem. https://doi.org/10.1134/S0022476621100097

    Article  Google Scholar 

  57. Ahraminejad M, Ghiasi R, Mohtat B, Ahmadi R (2021) Computational investigation of the substituent effect in the [2 + 4] Diels−Alder cycloaddition reactions of HSi≡Si(para-C6H4X) with benzene. J Chin Chem Soc. https://doi.org/10.1002/jccs.202000428

    Article  Google Scholar 

  58. Ansari ESh, Ghiasi R, Forghaniha A (2020) Computational investigation into the solvent effect on the Diels-Alder reaction of isobenzofuran and ethylene. Chem Methodol. https://doi.org/10.33945/SAMI/CHEMM/2020.3.1

    Article  Google Scholar 

  59. Ansari ESh, Ghiasi R, Forghaniha A (2019) Thermodynamic and kinetic studies of the retro-Diels-Alder reaction of 1,4-cyclohexadiene, 4H-pyran 4H-thiopyran, 1,4-dioxine, and 1,4-dithiine: a theoretical investigation. Struct Chem. https://doi.org/10.1007/s11224-018-1241-y

    Article  Google Scholar 

  60. Funel J-A, Abele S (2013) Industrial applications of the Diels-Alder reaction. Angew Chem Int Ed. https://doi.org/10.1002/anie.201201636

    Article  Google Scholar 

  61. Iijima S (1991) Helical microtubules of graphitic carbon. Nature. https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  62. Su DS, Schlӧgl R (2010) Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. Chemsuschem. https://doi.org/10.1002/cssc.200900182

    Article  PubMed  Google Scholar 

  63. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature. https://doi.org/10.1038/363603a0

    Article  Google Scholar 

  64. Materials Studio 8.0. (2014) BIOVIA Inc., San Diego https://www.3ds.com/products-services/biovia/

  65. Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  66. Fishman GS (1996) Monte Carlo: concepts, algorithms and applications. Springer-Verlag, New York

    Book  Google Scholar 

  67. Kroese DP, Brereton T, Taimre T, Botev ZI (2014) Why the Monte Carlo method is so important today. WIREs Comput Stat. https://doi.org/10.1002/wics.1314

    Article  Google Scholar 

  68. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335–341

    Article  CAS  PubMed  Google Scholar 

  69. BIOVIA Materials Studio adsorption locator datasheet. https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/BIOVIA/PDF/BIOVIA-materials-studio-adsorption-locator.pdf

  70. Granovsky AA. Firefly 8.1.0. http://classic.chem.msu.su/gran/gamess/index.html

  71. ORCA 4.2. https://orcaforum.kofo.mpg.de/app.php/portal

  72. HyperChem 8.0. Hypercube, Inc. http://www.hypercubeusa.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sh. Yakupov.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakulin, I.V., Talipov, R.F., Yakupov, I.S. et al. Theoretical Substantiation of the Possibility of Predicting the Catalytic Activity of Carbon Nanotubes in the Diels–Alder Reaction. Catal Lett 154, 1284–1295 (2024). https://doi.org/10.1007/s10562-023-04364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04364-5

Keywords

Navigation