Skip to main content
Log in

Modulating Propane Dehydrogenation Performance and Stability of Ni2P with Co Doping

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Non-oxidative propane dehydrogenation is an endothermic reaction requiring thermally stable and regenerable catalysts to produce propylene. In this work, we investigate bimetallic CoXNi2-XP as an alternative, non-noble metal propane dehydrogenation catalyst. Co1Ni1P displayed higher propylene selectivity than Co2P and higher site-normalized propylene production rates than Ni2P. Different compositions of CoXNi2-XP catalysts were evaluated for propane dehydrogenation with oxidative regeneration in between each cycle. Ni-rich Co0.5Ni1.5P showed increased propylene production upon regeneration due to the formation of the Ni12P5 phase during reaction. In contrast, Co1Ni1P and Co1.25Ni0.75P showed the ability to recover > 50% of the initial activity for at least 3 oxidative regenerations, while maintaining high propylene selectivity without any phase change. This study showcases the enhancement in stability and propane dehydrogenation performance of Ni2P through Co incorporation and Ni:Co ratio control.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen S, Chang X, Sun G et al (2021) Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem Soc Rev 50:3315–3354. https://doi.org/10.1039/d0cs00814a

    Article  CAS  PubMed  Google Scholar 

  2. Maddah HA (2018) A comparative study between propane dehydrogenation (PDH) technologies and plants in Saudi Arabia. Am Sci Res J Eng Technol Sci 45:49–63

    Google Scholar 

  3. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653. https://doi.org/10.1021/cr5002436

    Article  CAS  PubMed  Google Scholar 

  4. Pham HN, Sattler JJHB, Weckhuysen BM, Datye AK (2016) Role of Sn in the regeneration of Pt/γ-Al 2 O 3 light alkane dehydrogenation catalysts. ACS Catal 6:2257–2264. https://doi.org/10.1021/acscatal.5b02917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iglesias-Juez A, Beale AM, Maaijen K et al (2010) A combined in situ time-resolved UV-Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions. J Catal 276:268–279. https://doi.org/10.1016/j.jcat.2010.09.018

    Article  CAS  Google Scholar 

  6. Stagg SM, Querini CA, Alvarez WE, Resasco DE (1997) Isobutane dehydrogenation on Pt-Sn/SiO2 catalysts: effect of preparation variables and regeneration treatments. J Catal 168:75–94. https://doi.org/10.1006/jcat.1997.1617

    Article  CAS  Google Scholar 

  7. Sun C, Luo J, Cao M et al (2018) A comparative study on different regeneration processes of Pt-Sn/γ-Al2O3 catalysts for propane dehydrogenation. J Energy Chem 27:311–318. https://doi.org/10.1016/j.jechem.2017.09.035

    Article  Google Scholar 

  8. Ko J, Muhlenkamp JA, Bonita Y et al (2020) Experimental and computational investigation of the role of P in moderating ethane dehydrogenation performance over Ni-based catalysts. Ind Eng Chem Res 59:12666–12676. https://doi.org/10.1021/acs.iecr.0c00908

    Article  CAS  Google Scholar 

  9. Muhlenkamp JA, LiBretto NJ, Miller JT, Hicks JC (2022) Ethane dehydrogenation performance and high temperature stability of silica supported cobalt phosphide nanoparticles. Catal Sci Technol 12:976–985. https://doi.org/10.1039/d1cy01737c

    Article  CAS  Google Scholar 

  10. Muhlenkamp JA, Hicks JC (2022) Consequences of propane dehydrogenation and oxidative regeneration on Ni-phosphide phase stability. Ind Eng Chem Res 61:14472–14481. https://doi.org/10.1021/acs.iecr.2c02514

    Article  CAS  Google Scholar 

  11. Zhu Q, Zhang H, Zhang S et al (2019) Dehydrogenation of isobutane over a Ni–P/SiO2 catalyst: effect of P addition. Ind Eng Chem Res 58:7834–7843. https://doi.org/10.1021/acs.iecr.9b00032

    Article  CAS  Google Scholar 

  12. Xu Y, Wang X, Lv R (2014) Interaction between Cs and Ni2P/SiO2 for enhancing isobutane dehydrogenation in the presence of hydrogen. React Kinet Mech Catal 113:393–406. https://doi.org/10.1007/s11144-014-0738-7

    Article  CAS  Google Scholar 

  13. Xu Y, Sang H, Wang K, Wang X (2014) Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni 2 P supported on active carbon. Appl Surf Sci 316:163–170. https://doi.org/10.1016/j.apsusc.2014.07.119

    Article  ADS  CAS  Google Scholar 

  14. Yao Y, Zuo M, Zhou H et al (2018) One-pot preparation of Ni2P/γ-Al2O3 catalyst for dehydrogenation of propane to propylene. ChemistrySelect 3:10532–10536. https://doi.org/10.1002/slct.201801964

    Article  CAS  Google Scholar 

  15. Dai Y, Gao X, Wang Q et al (2021) Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem Soc Rev 50:5590–5630. https://doi.org/10.1039/d0cs01260b

    Article  CAS  PubMed  Google Scholar 

  16. Bonita Y, Jain V, Geng F et al (2020) Hydrogenation of cinnamaldehyde to cinnamyl alcohol with metal phosphides: catalytic consequences of product and pyridine doping. Appl Catal B Environ 277:119272. https://doi.org/10.1016/j.apcatb.2020.119272

    Article  CAS  Google Scholar 

  17. Bonita Y, O’Connell TP, Miller HE, Hicks JC (2019) Revealing the hydrogenation performance of RuMo phosphide for chemoselective reduction of functionalized aromatic hydrocarbons. Ind Eng Chem Res 58:3650–3658. https://doi.org/10.1021/acs.iecr.8b06295

    Article  CAS  Google Scholar 

  18. Bonita Y, Hicks JC (2018) Periodic trends from metal substitution in bimetallic Mo-based phosphides for hydrodeoxygenation and hydrogenation reactions. J Phys Chem C 122:13322–13332. https://doi.org/10.1021/acs.jpcc.7b09363

    Article  CAS  Google Scholar 

  19. Rensel DJ, Kim J, Jain V et al (2017) Composition-directed FeXMo2-XP bimetallic catalysts for hydrodeoxygenation reactions. Catal Sci Technol 7:1857–1867. https://doi.org/10.1039/c7cy00324b

    Article  CAS  Google Scholar 

  20. Bonita Y, Hicks JC (2018) Metal phosphides and their applications in catalysis. In: Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys. Royal Society of Chemistry, pp 46–70

  21. Bonita Y, Jain V, Geng F et al (2019) Direct synthesis of furfuryl alcohol from furfural: catalytic performance of monometallic and bimetallic Mo and Ru phosphides. Catal Sci Technol 9:3656–3668. https://doi.org/10.1039/c9cy00705a

    Article  CAS  Google Scholar 

  22. Rensel DJ, Kim J, Bonita Y, Hicks JC (2016) Investigating the multifunctional nature of bimetallic FeMoP catalysts using dehydration and hydrogenolysis reactions. Appl Catal A Gen 524:85–93. https://doi.org/10.1016/j.apcata.2016.06.011

    Article  CAS  Google Scholar 

  23. Rensel DJ, Rouvimov S, Gin ME, Hicks JC (2013) Highly selective bimetallic FeMoP catalyst for C-O bond cleavage of aryl ethers. J Catal 305:256–263. https://doi.org/10.1016/j.jcat.2013.05.026

    Article  CAS  Google Scholar 

  24. Burns AW, Gaudette AF, Bussell ME (2008) Hydrodesulfurization properties of cobalt-nickel phosphide catalysts: Ni-rich materials are highly active. J Catal 260:262–269. https://doi.org/10.1016/j.jcat.2008.10.001

    Article  CAS  Google Scholar 

  25. Rodriguez JA, Kim JY, Hanson JC et al (2003) Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies. J Phys Chem B 107:6276–6285. https://doi.org/10.1021/jp022639q

    Article  CAS  Google Scholar 

  26. Ted Oyama S, Zhao H, Freund HJ et al (2012) Unprecedented selectivity to the direct desulfurization (DDS) pathway in a highly active FeNi bimetallic phosphide catalyst. J Catal 285:1–5. https://doi.org/10.1016/j.jcat.2011.08.006

    Article  CAS  Google Scholar 

  27. Zhao H, Oyama ST, Freund H-J et al (2015) Nature of active sites in Ni2P hydrotreating catalysts as probed by iron substitution. Appl Catal B Environ 164:204–216. https://doi.org/10.1016/j.apcatb.2014.09.010

    Article  CAS  Google Scholar 

  28. Fu S, Zhu C, Song J et al (2016) Highly ordered mesoporous bimetallic phosphides as efficient oxygen evolution electrocatalysts. ACS Energy Lett 1:792–796. https://doi.org/10.1021/acsenergylett.6b00408

    Article  CAS  Google Scholar 

  29. Li W, Gao X, Wang X et al (2016) From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000 h water splitting. https://doi.org/10.1016/j.jpowsour.2016.08.126

  30. Fang M, Tang W, Yu C et al (2015) Performance of Ni-rich bimetallic phosphides on simultaneous quinoline hydrodenitrogenation and dibenzothiophene hydrodesulfurization. Fuel Process Technol 129:236–244. https://doi.org/10.1016/j.fuproc.2014.09.020

    Article  CAS  Google Scholar 

  31. Zuzaniuk V, Prins R (2003) Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts. J Catal 219:85–96. https://doi.org/10.1016/S0021-9517(03)00149-0

    Article  CAS  Google Scholar 

  32. Stöber R, Mai F, Sebastian O et al (2022) A highly stable bimetallic transition metal phosphide catalyst for selective dehydrogenation of n-heptane. ChemCatChem. https://doi.org/10.1002/cctc.202200371

    Article  Google Scholar 

  33. Oyama ST, Wang X, Lee YK et al (2002) Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques. J Catal 210:207–217. https://doi.org/10.1006/jcat.2002.3681

    Article  CAS  Google Scholar 

  34. Wang X, Clark P, Oyama ST (2002) Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides. J Catal 208:321–331. https://doi.org/10.1006/JCAT.2002.3604

    Article  CAS  Google Scholar 

  35. Rongrong J, Yunqi L, Hong M et al (2017) Study on regeneration strategy for Ni2P/Al2O3 dehydrogenation catalysts. ACTA Pet Sin 33:64–70. https://doi.org/10.3969/j.issn.1001-8719.2017.01.009

    Article  CAS  Google Scholar 

  36. Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 48:1573–1580. https://doi.org/10.1107/S1600576715014685

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nowotny H, Henglein E (1938) Röntgenographische Untersuchung im System Ni–P. Z Phys Chem 40B:281–284. https://doi.org/10.1515/zpch-1938-4019

    Article  Google Scholar 

  38. Sénateur JP, Rouault A, L’Héritier P et al (1973) La selectivite des substitutions dans les phases MM’P etude de l’ordre par diffraction neutronique dans NiCoP. Mater Res Bull 8:229–238. https://doi.org/10.1016/0025-5408(73)90176-1

    Article  Google Scholar 

  39. Wang R, Smith KJ (2010) The effect of preparation conditions on the properties of high-surface area Ni2P catalysts. Appl Catal A Gen 380:149–164. https://doi.org/10.1016/j.apcata.2010.03.055

    Article  CAS  Google Scholar 

  40. Jiang N, Xu XW, Song HL et al (2016) Effect of citric acid on the hydrodesulfurization performance of unsupported nickel phosphide. Ind Eng Chem Res 55:555–559. https://doi.org/10.1021/acs.iecr.5b03359

    Article  CAS  Google Scholar 

  41. Wang R, Smith KJ (2014) Preparation of unsupported NiMoP catalysts for 4,6-dimethyldibenzothiophene hydrodesulfurization. Catal Lett 144:1594–1601. https://doi.org/10.1007/s10562-014-1290-9

    Article  CAS  Google Scholar 

  42. Whiffen VML, Smith KJ (2013) The effect of calcination temperature on the properties and hydrodeoxygenation activity of ni2p catalysts prepared using citric acid. ACS Symp Ser 1132:287–300. https://doi.org/10.1021/bk-2013-1132.ch013

    Article  CAS  Google Scholar 

  43. Liyanage DR, Danforth SJ, Liu Y et al (2015) Simultaneous control of composition, size, and morphology in discrete Ni2-xCox P nanoparticles. Chem Mater 27:4349–4357. https://doi.org/10.1021/acs.chemmater.5b00958

    Article  CAS  Google Scholar 

  44. Fruchart R, Roger A, Senateur JP (1969) Crystallographic and magnetic properties of solid solutions of the phosphides M 2 P, M = Cr, Mn, Fe Co, and Ni. J Appl Phys 40:1250–1257. https://doi.org/10.1063/1.1657617

    Article  ADS  CAS  Google Scholar 

  45. Lomnitskaya YF, Kuz’Ma YB, Chernogorenko VB, Muchnik SV (1991) Interactions of the components in the Co-Ni-P system. Russ J Inorg Chem 36:902–903

    Google Scholar 

  46. Roger A, Senateur JP, Fruchart R (1969) Les proprietes cristallographiques et magnetiques des solutions solides entre les phosphures Ni2P-Co2P-Fe2P-Mn2P et Cr2P. Ann Chim 79–91

  47. Artigas M, Bacmann M, Boursier D et al (1992) Formation d’amas diamagnétiques dans le système métallique Ni2P-Co2P. C R Acad Sci Ser II 315:29–34

    CAS  Google Scholar 

  48. Abu II, Smith KJ (2006) The effect of cobalt addition to bulk MoP and Ni2P catalysts for the hydrodesulfurization of 4,6-dimethyldibenzothiophene. J Catal 241:356–366. https://doi.org/10.1016/j.jcat.2006.05.010

    Article  CAS  Google Scholar 

  49. Sawhill SJ, Phillips DC, Bussell ME (2003) Thiophene hydrodesulfurization over supported nickel phosphide catalysts. J Catal 215:208–219. https://doi.org/10.1016/S0021-9517(03)00018-6

    Article  CAS  Google Scholar 

  50. Alvarez-Galvan MC, Blanco-Brieva G, Capel-Sanchez M et al (2018) Metal phosphide catalysts for the hydrotreatment of non-edible vegetable oils. Catal Today 302:242–249. https://doi.org/10.1016/j.cattod.2017.03.031

    Article  CAS  Google Scholar 

  51. Larsson E (1965) An X-ray investigation of the Ni-P system and the crystal structures of Ni P and Ni P2. Ark foer Kemi 23:335–365

    CAS  Google Scholar 

  52. Sawhill SJ, Layman KA, Van Wyk DR et al (2005) Thiophene hydrodesulfurization over nickel phosphide catalysts: effect of the precursor composition and support. J Catal 231:300–313. https://doi.org/10.1016/j.jcat.2005.01.020

    Article  CAS  Google Scholar 

  53. Burns AW, Layman KA, Bale DH, Bussell ME (2008) Understanding the relationship between composition and hydrodesulfurization properties for cobalt phosphide catalysts. Appl Catal A Gen 343:68–76. https://doi.org/10.1016/j.apcata.2008.03.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the Engineering Research Centers Program of the National Science Foundation under NSF Cooperative Agreement no. EEC-1647722. The authors would also like to thank the Notre Dame Integrated Imaging Facility, the Notre Dame Molecular Structure Facility, Notre Dame Centre for Environmental Science and Technology, and Notre Dame Materials Characterization Facility for use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. Hicks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1029 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhlenkamp, J.A., Cho, Y. & Hicks, J.C. Modulating Propane Dehydrogenation Performance and Stability of Ni2P with Co Doping. Catal Lett 154, 910–919 (2024). https://doi.org/10.1007/s10562-023-04357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04357-4

Keywords

Navigation