Skip to main content

Advertisement

Log in

Study on Isobutane/1-Butene Alkylation Over Phosphorus-Modified HY Zeolite

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The present work reports the excellent catalytic performance of phosphorus-modified HY zeolite in the alkylation of isobutane with 1-butene. A series of HY zeolites with different phosphorus-loading were prepared by wet impregnation with diammonium hydrogen phosphate solution and applied to catalyze isobutane/1-butene alkylation at 80 °C, 2 MPa, and 3 h−1. The physicochemical properties of the zeolites were characterized by XRD, SEM, N2 adsorption–desorption isotherms, ICP-OES, FTIR, NMR, NH3-TPD, and Py-IR. The mechanism of HY zeolite modified by phosphorus was investigated in depth. The results indicated that the phosphorus atoms were incorporated into the zeolite framework and involved in the formation of new Brønsted acid sites. The phosphorus-modified zeolites presented a dramatic rise in the amount of medium-strong Brønsted acid sites and the Brønsted/Lewis ratio. The initial selectivities of C8 and trimethylpentane obtained on HY-1P (phosphorus-loading of 1 wt%) were up to 75.7 wt% and 53.9 wt% respectively, which were much higher than the values over non-modified HY zeolite. Moreover, the deactivation of the catalyst was appreciably delayed. It was verified that catalyst deactivation was caused by the blockage of pores and the coverage of active sites for the deposition of C12-C20 long-chain alkanes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. Hommeltoft SI (2001) Isobutane alkylation: Recent developments and future perspectives. Appl Catal A 221:421–428

    Article  CAS  Google Scholar 

  2. Albright LF (2009) Present and future alkylation processes in refineries. Ind Eng Chem Res 48:1409–1413

    Article  CAS  Google Scholar 

  3. Corma A, Martinez A, Martinez C (1994) Isobutane/2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size. J Catal 146:185–192

    Article  CAS  Google Scholar 

  4. Yoo K, Smirniotis PG (2002) The influence of Si/Al ratios of synthesized beta zeolites for the alkylation of isobutane with 2-butene. Appl Catal A 227:171–179

    Article  CAS  Google Scholar 

  5. Corma A, Martinez A, Martinez C (1996) The effect of sulfation conditions and activation temperature of sulfate-doped ZrO2, TiO2 and SnO2 catalysts during isobutane/2-butene alkylation. Appl Catal A 144:249–268

    Article  CAS  Google Scholar 

  6. Sun W, Xu L, Chu Y, Shi W (2003) Controllable synthesis, characterization and catalytic properties of WO3/ZrO2 mixed oxides nanoparticles. J Colloid Interface Sci 266:99–106

    Article  PubMed  CAS  Google Scholar 

  7. Omarov SO, Vlasov E, Sladkovskiy D, Semikin K, Matveyeva A, Fedorov S, Oganesyan G, Murzin DY (2018) Physico-chemical properties of MoO3/ZrO2 catalysts prepared by dry mixing for isobutane alkylation and butene transformations. Appl Catal B 230:246–259

    Article  CAS  Google Scholar 

  8. Blasco T, Corma A, Martinez A, Martinez-Escolano P (1998) Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutane with 2-butene: The benefit of using MCM-41 with larger pore diameters. J Catal 177:306–313

    Article  CAS  Google Scholar 

  9. Gayraud P, Stewart I, Derouane-Abd Hamid S, Essayem N, Derouane E, Védrine J (2000) Performance of potassium 12-tungstophosphoric salts as catalysts for isobutane/butene alkylation in subcritical and supercritical phases. Catal Today 63:223–228

    Article  CAS  Google Scholar 

  10. He Y, He Y (2004) The effect of trace amounts of promoter on the selectivity of catalyst in the solid acid alkylation. Appl Catal A 268:115–119

    Article  CAS  Google Scholar 

  11. Nayak SV, Ramachandran PA, Dudukovic MP (2010) Modeling of key reaction pathways: Zeolite catalyzed alkylation processes. Chem Eng Sci 65:335–342

    Article  CAS  Google Scholar 

  12. Singhal S, Agarwal S, Arora S, Singhal N, Kumar A (2017) Solid acids: potential catalysts for alkene-isoalkane alkylation. Catal Sci Technol 7:5810–5819

    Article  CAS  Google Scholar 

  13. Liu J, Ding N, Hong X, Zhou S, Zhou X, Wang JA, Chen L (2020) Isobutane/1-butene alkylation performance of ammonium fluoride-modified HUSY zeolite. Catal Lett 150:2996–3006

    Article  CAS  Google Scholar 

  14. Sievers C, Liebert JS, Stratmann MM, Olindo R, Lercher JA (2008) Comparison of zeolites LaX and LaY as catalysts for isobutane/2-butene alkylation. Appl Catal A 336:89–100

    Article  CAS  Google Scholar 

  15. Sun X, Zhang X, Zheng T, Liu H, Zhang R, Meng X, Xu C, Liu Z (2021) Preparation of CuHY catalyst via solid-state ion exchange method and its catalytic performance in isobutane/2-butene alkylation. RSC Adv 11:23045–23054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Feller A, Guzman A, Zuazo I, Lercher JA (2004) On the mechanism of catalyzed isobutane/butene alkylation by zeolites. J Catal 224:80–93

    Article  CAS  Google Scholar 

  17. Corma A, Martinez A, Martinez C (1994) Isobutane/2-butene alkylation on MCM-22 catalyst. Influence of zeolite structure and acidity on activity and selectivity. Catal Lett 28:187–201

    Article  CAS  Google Scholar 

  18. Yoo K, Burckle EC, Smirniotis PG (2002) Isobutane/2-butene alkylation using large-pore zeolites: Influence of pore structure on activity and selectivity. J Catal 211:6–18

    Article  CAS  Google Scholar 

  19. Soh JC, Chong SL, Hossain SS, Cheng CK (2017) Catalytic ethylene production from ethanol dehydration over non-modified and phosphoric acid modified Zeolite HY (80) catalysts. Fuel Process Technol 158:85–95

    Article  CAS  Google Scholar 

  20. Manrique C, Guzmán A, Solano R, Echavarría A (2019) Phosphorous-modified beta zeolite and its performance in vacuum gas oil hydrocracking activity. Energy Fuels 33:3483–3491

    Article  CAS  Google Scholar 

  21. Dong H, Yu H, Wang L, Wang Y, Zhong J, Lian Y (2022) Catalytic performance of phosphorus modified HZSM-5 zeolite catalysts in the Co-cracking reaction of n-Hexane and methanol. Catal Lett 152:1233–1243

    Article  CAS  Google Scholar 

  22. Göhlich M, Reschetilowski W, Paasch S (2011) Spectroscopic study of phosphorus modified H-ZSM-5. Microporous Mesoporous Mater 142:178–183

    Article  Google Scholar 

  23. Ramesh K, Hui LM, Han Y-F, Borgna A (2009) Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration. Catal Commun 10:567–571

    Article  CAS  Google Scholar 

  24. Ramasamy KK, Zhang H, Sun J, Wang Y (2014) Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catal Today 238:103–110

    Article  CAS  Google Scholar 

  25. Jang H-G, Min H-K, Hong SB, Seo G (2013) Tetramethylbenzenium radical cations as major active intermediates of methanol-to-olefin conversions over phosphorous-modified HZSM-5 zeolites. J Catal 299:240–248

    Article  CAS  Google Scholar 

  26. Epelde E, Gayubo AG, Olazar M, Bilbao J, Aguayo AT (2014) Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene. Chem Eng J 251:80–91

    Article  CAS  Google Scholar 

  27. Shcherban N, Barakov R, Yaremov P, Solomakha V, Gryn S, Khaynakova O, Ilyin V (2014) Template synthesis, structure, sorption properties and acidity of micro-mesoporous materials obtained from sol-precursor of zeolite BEA. J Porous Mater 21:355–363

    Article  CAS  Google Scholar 

  28. van Bokhoven JA, Koningsberger DC, Kunkeler P, van Bekkum H, Kentgens APM (2000) Stepwise dealumination of zeolite Beta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR. J Am Chem Soc 122:12842–12847

    Article  Google Scholar 

  29. Chen J, Chen T, Guan N, Wang J (2004) Dealumination process of zeolite omega monitored by 27Al 3QMAS NMR spectroscopy. Catal Today 93:627–630

    Article  Google Scholar 

  30. Li W, Zheng J, Luo Y, Da Z (2016) Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y. Appl Surf Sci 382:302–308

    Article  CAS  Google Scholar 

  31. Kao H-M, Grey CP, Pitchumani K, Lakshminarasimhan P, Ramamurthy V (1998) Activation conditions play a key role in the activity of zeolite CaY: NMR and product studies of Brønsted acidity. J Phys Chem A 102:5627–5638

    Article  CAS  Google Scholar 

  32. Pu X, Liu N, Shi L (2015) Acid properties and catalysis of USY zeolite with different extra-framework aluminum concentration. Microporous Mesoporous Mater 201:17–23

    Article  CAS  Google Scholar 

  33. Xin S, Wang Q, Xu J, Chu Y, Wang P, Feng N, Qi G, Trébosc J, Lafon O, Fan W (2019) The acidic nature of “NMR-invisible” tri-coordinated framework aluminum species in zeolites. Chem Sci 10:10159–10169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. de Menezes SC, Lam Y, Damodaran K, Pruski M (2006) Modification of H-ZSM-5 zeolites with phosphorus. 1. Identification of aluminum species by 27Al solid-state NMR and characterization of their catalytic properties. Microporous Mesoporous Mater 95:286–295

    Article  Google Scholar 

  35. Damodaran K, Wiench J, de Menezes SC, Lam Y, Trebosc J, Amoureux J-P, Pruski M (2006) Modification of H-ZSM-5 zeolites with phosphorus. 2. Interaction between phosphorus and aluminum studied by solid-state NMR spectroscopy. Microporous Mesoporous Mater 95:296–305

    Article  CAS  Google Scholar 

  36. Zhao Y, Liu J, He N, Liu C, Guo H (2019) A comparison on the hydrothermal stability of nano-sized H-ZSM-5 zeolite modified by ammonium dihydrogen phosphate and trimethylphosphate. Catal Lett 149:2169–2179

    Article  CAS  Google Scholar 

  37. Díaz Velázquez H, Likhanova N, Aljammal N, Verpoort F, Martínez-Palou R (2020) New insights into the progress on the isobutane/butene alkylation reaction and related processes for high-quality fuel production. A critical review. Energy Fuels 34:15525–15556

    Article  Google Scholar 

  38. Feller A, Zuazo I, Guzman A, Barth JO, Lercher JA (2003) Common mechanistic aspects of liquid and solid acid catalyzed alkylation of isobutane with n-butene. J Catal 216:313–323

    Article  CAS  Google Scholar 

  39. Zhou S, Zhang C, Li Y, Shao B, Luo Y, Shu X (2020) A facile way to improve zeolite Y-based catalysts’ properties and performance in the isobutane–butene alkylation reaction. RSC Adv 10:29068–29076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Flego C, Kiricsi I, Parker W Jr, Clerici M (1995) Spectroscopic studies of LaHY-FAU catalyst deactivation in the alkylation of isobutane with 1-butene. Appl Catal A 124:107–119

    Article  CAS  Google Scholar 

  41. Chen Z, Gao F, Ren K, Wu Q, Luo Y, Zhou H, Zhang M, Xu Q (2018) Mechanism of byproducts formation in the isobutane/butene alkylation on HY zeolites. RSC Adv 8:3392–3398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hamzehlouyan T, Kazemeini M, Khorasheh F (2010) Modeling of catalyst deactivation in zeolite-catalyzed alkylation of isobutane with 2-butene. Chem Eng Sci 65:645–650

    Article  CAS  Google Scholar 

  43. Sievers C, Zuazo I, Guzman A, Olindo R, Syska H, Lercher JA (2007) Stages of aging and deactivation of zeolite LaX in isobutane/2-butene alkylation. J Catal 246:315–324

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Song, Y., Zhou, X. et al. Study on Isobutane/1-Butene Alkylation Over Phosphorus-Modified HY Zeolite. Catal Lett 154, 651–663 (2024). https://doi.org/10.1007/s10562-023-04322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04322-1

Keywords

Navigation