Skip to main content
Log in

Regulation of Oxygen Vacancies in Ceria-Zirconia Nanocatalysts by Pluronic P123-Templated for Room Temperature Formaldehyde Total Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of mesoporous nanoparticle P-CexZr1-xOy (PCZ) catalysts with abundant oxygen vacancies and high specific surface area were successfully prepared, exhibiting 100% formaldehyde conversion at room temperature (25 °C). The PCZ catalyst was investigated in depth utilizing TEM, BET, XRD, XPS, H2-TPR, and Raman characterization, it was found that the PCZ catalyst had an average particle size of 10 nm and a specific surface area of 108 m2/g; templating caused by P123 and effective doping of Zr atoms regulated the oxygen vacancies in the catalyst, altered the reduction characteristics and chemical state of cerium to formed the redox cyclic couple of Ce3+/Ce4+, which significantly enhanced the catalytic oxidation performance of the PCZ catalyst in the indoor environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rovira J, Roig N, Nadal M, Schuhmacher M, Domingo JL (2016) Human health risks of formaldehyde indoor levels: an issue of concern. J Environ Sci Health Part A 51:357–363

    Article  CAS  Google Scholar 

  2. Nielsen GD, Wolkoff P (2010) Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch Toxicol 84:423–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA 3rd et al (2020) Outdoor air pollution and cancer: an overview of the current evidence and public health recommendations. CA Cancer J Clin. https://doi.org/10.3322/caac.21632

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yang P, Yang S, Shi Z, Meng Z, Zhou R (2015) Deep oxidation of chlorinated VOCs over CeO 2 -based transition metal mixed oxide catalysts. Appl Catal B 162:227–235

    Article  CAS  Google Scholar 

  5. Zhao L, Zhang Z, Li Y, Leng X, Zhang T, Yuan F et al (2019) Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion. Appl Catal B 245:502–512

    Article  CAS  Google Scholar 

  6. Jeon N, Choe H, Jeong B, Yun Y (2020) Propane dehydrogenation over vanadium-doped zirconium oxide catalysts. Catal Today 352:337–344

    Article  Google Scholar 

  7. Ye J, Zhu B, Cheng B, Jiang C, Wageh S, Al-Ghamdi AA et al (2022) Synergy between platinum and gold nanoparticles in oxygen activation for enhanced room-temperature formaldehyde oxidation. Adv Func Mater 32:2110423

    Article  CAS  Google Scholar 

  8. Yan Z, Xu Z, Yu J, Jaroniec M (2016) Enhanced formaldehyde oxidation on CeO 2 /AlOOH-supported Pt catalyst at room temperature. Appl Catal B 199:458–465

    Article  CAS  Google Scholar 

  9. Shi Y, Qiao Z, Liu Z, Zuo J (2019) Cerium doped Pt/TiO2 for catalytic oxidation of low concentration formaldehyde at room temperature. Catal Lett 149:1319–1325

    Article  CAS  Google Scholar 

  10. Qin X, Chen X, Chen M, Zhang J, He H, Zhang C (2021) Highly efficient Ru/CeO2 catalysts for formaldehyde oxidation at low temperature and the mechanistic study. Catal Sci Technol 11:1914–1921

    Article  CAS  Google Scholar 

  11. Nolan M, Parker SC, Watson GW (2005) The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf Sci 595:223–232

    Article  CAS  Google Scholar 

  12. Lv L, Hao Y-R, Guo N, Sun J, Song T, Xue H et al (2021) The synergistic effect of oxygen vacancy and carbon interface engineering in hollow cerium oxide to achieve enhanced oxygen reduction performance. ACS Appl Energ Mater 4:5339–5347

    Article  CAS  Google Scholar 

  13. Ding Y, Jia Y, Jiang M, Guo Y, Guo Y, Wang L et al (2021) Superior catalytic activity of Pd-based catalysts upon tuning the structure of the ceria-zirconia support for methane combustion. Chem Eng J 416:129150

    Article  CAS  Google Scholar 

  14. Yao X, Chen L, Cao J, Chen Y, Tian M, Yang F et al (2019) Enhancing the deNO performance of MnO /CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification. Chem Eng J 369:46–56

    Article  CAS  Google Scholar 

  15. Wang Q, Li G, Zhao B, Zhou R (2010) Synthesis of La modified ceria–zirconia solid solution by advanced supercritical ethanol drying technology and its application in Pd-only three-way catalyst. Appl Catal B 100:516–528

    Article  CAS  Google Scholar 

  16. Gutiérrez-Ortiz JI, de Rivas B, López-Fonseca R, González-Velasco JR (2006) Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions. Appl Catal B 65:191–200

    Article  Google Scholar 

  17. Zheng Y, Li K, Wang H, Wang Y, Tian D, Wei Y et al (2016) Structure dependence and reaction mechanism of CO oxidation: a model study on macroporous CeO2 and CeO2-ZrO2 catalysts. J Catal 344:365–377

    Article  CAS  Google Scholar 

  18. O’Donnell R, Ralphs K, Grolleau M, Manyar H, Artioli N (2020) Doping manganese oxides with ceria and ceria zirconia using a one-pot sol-gel method for low temperature diesel oxidation catalysts. Top Catal 63:351–362

    Article  Google Scholar 

  19. Wolfbeisser A, Sophiphun O, Bernardi J, Wittayakun J, Föttinger K, Rupprechter G (2016) Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal Today 277:234–245

    Article  CAS  Google Scholar 

  20. Topka P, Kaluža L, Gaálová J (2016) Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts. Chem Papers. https://doi.org/10.1515/chempap-2016-0028

    Article  Google Scholar 

  21. Nelson AE, Schulz KH (2003) Surface chemistry and microstructural analysis of CexZr1−xO2−y model catalyst surfaces. Appl Surf Sci 210:206–221

    Article  CAS  Google Scholar 

  22. Kaplin IY, Lokteva ES, Golubina EV, Shishova VV, Maslakov KI, Fionov AV et al (2019) Efficiency of manganese modified CTAB-templated ceria-zirconia catalysts in total CO oxidation. Appl Surf Sci 485:432–440

    Article  CAS  Google Scholar 

  23. Liu B, Li C, Zhang Y, Liu Y, Hu W, Wang Q et al (2012) Investigation of catalytic mechanism of formaldehyde oxidation over three-dimensionally ordered macroporous Au/CeO2 catalyst. Appl Catal B 111–112:467–475

    Article  Google Scholar 

  24. Si Z, Weng D, Wu X, Ran R, Ma Z (2012) NH3-SCR activity, hydrothermal stability, sulfur resistance and regeneration of Ce0.75Zr0.25O2–PO43−catalyst. Catal Commun 17:146–9

    Article  CAS  Google Scholar 

  25. Liu L, Cao Y, Sun W, Yao Z, Liu B, Gao F et al (2011) Morphology and nanosize effects of ceria from different precursors on the activity for NO reduction. Catal Today 175:48–54

    Article  CAS  Google Scholar 

  26. Ma L, Seo CY, Chen X, Li J, Schwank JW (2018) Sodium-promoted Ag/CeO2 nanospheres for catalytic oxidation of formaldehyde. Chem Eng J 350:419–428

    Article  CAS  Google Scholar 

  27. Burri DR, Choi K-M, Lee J-H, Han D-S, Park S-E (2007) Influence of SBA-15 support on CeO2–ZrO2 catalyst for the dehydrogenation of ethylbenzene to styrene with CO2. Catal Commun 8:43–48

    Article  CAS  Google Scholar 

  28. Li X, Dai H, Deng J, Liu Y, Xie S, Zhao Z et al (2013) Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene. Chem Eng J 228:965–975

    Article  CAS  Google Scholar 

  29. Elsayed NH, Roberts NRM, Joseph B, Kuhn JN (2015) Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts. Appl Catal B 179:213–219

    Article  CAS  Google Scholar 

  30. Zhou J, Wu K, Wang W, Han Y, Xu Z, Wan H et al (2015) Simultaneous removal of monochloroacetic acid and bromate by liquid phase catalytic hydrogenation over Pd/Ce 1–x Zr x O 2. Appl Catal B 162:85–92

    Article  CAS  Google Scholar 

  31. Gao F, Tang X, Yi H, Li J, Zhao S, Wang J et al (2017) Promotional mechanisms of activity and SO 2 tolerance of Co- or Ni-doped MnOx–CeO 2 catalysts for SCR of NOx with NH 3 at low temperature. Chem Eng J 317:20–31

    Article  CAS  Google Scholar 

  32. Li B, Ren Z, Ma Z, Huang X, Liu F, Zhang X et al (2016) Selective catalytic reduction of NO by NH3 over CuO–CeO2 in the presence of SO2. Catal Sci Technol 6:1719–1725

    Article  CAS  Google Scholar 

  33. Wang Y, Ge C, Zhan L, Li C, Qiao W, Ling L (2012) MnOx–CeO2/Activated Carbon Honeycomb Catalyst for Selective Catalytic Reduction of NO with NH3 at Low Temperatures. Ind Eng Chem Res 51:11667–11673

    Article  CAS  Google Scholar 

  34. Xie Y, Wu J, Jing G, Zhang H, Zeng S, Tian X et al (2018) Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl Catal B 239:665–676

    Article  CAS  Google Scholar 

  35. Pfau A, Schierbaum KD (1994) The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS UPS and HREELS study. Surf Sci 321:71–80

    Article  CAS  Google Scholar 

  36. Romeo M, Bak K, El Fallah J, Le Normand F, Hilaire L (1993) XPS Study of the reduction of cerium dioxide. Surf Interf Anal 20:508–512

    Article  CAS  Google Scholar 

  37. Infantes-Molina A, Mérida-Robles J, Maireles-Torres P, Finocchio E, Busca G, Rodríguez-Castellón E et al (2004) A new low-cost synthetic route to obtain zirconium containing mesoporous silica. Microporous Mesoporous Mater 75:23–32

    Article  CAS  Google Scholar 

  38. Bao H, Qian K, Chen X, Fang J, Huang W (2019) Spectroscopic study of microstructure-reducibility relation of CexZr1−xO2 solid solutions. Appl Surf Sci 467–468:361–369

    Article  Google Scholar 

  39. Cai T, Huang H, Deng W, Dai Q, Liu W, Wang X (2015) Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts. Appl Catal B 166–167:393–405

    Article  Google Scholar 

  40. Konsolakis M, Sgourakis M, Carabineiro SAC (2015) Surface and redox properties of cobalt–ceria binary oxides: on the effect of Co content and pretreatment conditions. Appl Surf Sci 341:48–54

    Article  CAS  Google Scholar 

  41. Wang C, Zhang C, Hua W, Guo Y, Lu G, Gil S et al (2017) Catalytic oxidation of vinyl chloride emissions over Co–Ce composite oxide catalysts. Chem Eng J 315:392–402

    Article  CAS  Google Scholar 

  42. Liyanage AD, Perera SD, Tan K, Chabal Y, Balkus KJ (2014) Synthesis, characterization, and photocatalytic activity of Y-doped CeO2 nanorods. ACS Catal 4:577–584

    Article  CAS  Google Scholar 

  43. Tan H, Wang J, Yu S, Zhou K (2015) Support morphology-dependent catalytic activity of Pd/CeO(2) for formaldehyde oxidation. Environ Sci Technol 49:8675–8682

    Article  PubMed  CAS  Google Scholar 

  44. Yao X, Kong T, Chen L, Ding S, Yang F, Dong L (2017) Enhanced low-temperature NH 3 -SCR performance of MnO x /CeO 2 catalysts by optimal solvent effect. Appl Surf Sci 420:407–415

    Article  CAS  Google Scholar 

  45. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) Raman and x-ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb. J Appl Phys 76:2435–2441

    Article  CAS  Google Scholar 

  46. Chen X, Chen X, Yu E, Cai S, Jia H, Chen J et al (2018) In situ pyrolysis of Ce–MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem Eng J 344:469–479

    Article  CAS  Google Scholar 

  47. Mukherjee D, Rao BG, Reddy BM (2016) CO and soot oxidation activity of doped ceria: influence of dopants. Appl Catal B 197:105–115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (51568068), young and middle-aged academic and technical leaders reserve talent project of Yunnan (CN) (202105AC160054)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiancheng Liu.

Ethics declarations

Conflict of interest

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Liu, X., Jia, L. et al. Regulation of Oxygen Vacancies in Ceria-Zirconia Nanocatalysts by Pluronic P123-Templated for Room Temperature Formaldehyde Total Oxidation. Catal Lett 154, 503–512 (2024). https://doi.org/10.1007/s10562-023-04321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04321-2

Keywords

Navigation