Skip to main content
Log in

Efficient Epoxidation of Olefins by Silica Supported Dioxidomolybdenum(VI) Coordination Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Molybdenum coordination compounds, [MoO2L1(CH3OH)] (1) and [MoO2L2(CH3OH)]0.5(CH3OH) (2), were obtained by the reaction of molybdenum trioxide with ONO-donor ligands [H2L1 = (E)-4-amino-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide and H2L2 = (E)-4-amino-N'-(2-hydroxynaphthalen-1-yl)methylene)benzohydrazide]. The structures of 1 and 2 were determined by single crystal X-ray analysis and they further characterized by elemental analysis (carbon, hydrogen and nitrogen) and spectroscopic methods such as FT-IR, UV–Vis and NMR analyses. According to the structural analyses, a free amine functionality (Ph-NH2) was present in the structure of compounds 1 and 2. Therefore, compounds 1 and 2 were supported on the surface of functionalized silica gel by amidification reaction. The obtained supported catalysts (Si-Mo-1 and Si-Mo-2) were characterized by XPS, XRD, EDX, DRS, TGA and FT-IR analyses. The obtained supported catalysts (Si-Mo-1 and Si-Mo-2) were tested in the epoxidation of olefins using aqueous TBHP oxidant. Some effective parameters on the selectivity and activity of Si-Mo-1 and Si-Mo-2 like the effect of the concentration of catalyst and oxidant, temperature and solvent were studied. The supported catalysts were easily recovered from the mixture of the reaction by filtration and the recovered catalysts were also characterized by various analyses. The results indicated that the supported catalysts (Si-Mo-1 and Si-Mo-2) are selective and effective catalysts for epoxidation of olefins.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kopylovich MN, Ribeiro APC, Alegria ECBA, Martins NMR, Martins LMDRS, Pombeiro AJL (2015) Adv Organomet Chem 63:91–174

    Google Scholar 

  2. Babaei B, Bezaatpour A, Basharnavaz H (2020) Polyhedron 179:114382

    Google Scholar 

  3. Skolia E, Gkizis PL, Kokotos CG (2022) ChemPlusChem 87:e202200008

    PubMed  Google Scholar 

  4. Dhinagaran G, Prashanna Suvaitha S, Muthukumaran M, Venkatachalam K (2021) Catal Lett 151:1361–1375

    Google Scholar 

  5. Mondal P, Das D, Islam SKM (2017) Catal Lett 147:2332–2339

    Google Scholar 

  6. Wang C, Yamamoto H (2015) Chem Asian J 10:2056–2068

    PubMed  Google Scholar 

  7. Xu C, Zhang C, Li H, Zhao X, Song L, Li X (2016) Catal Surv Asia 20:13–22

    Google Scholar 

  8. He J, Ling J, Chiu P (2014) Chem Rev 114:8037–8128

    PubMed  Google Scholar 

  9. Xu J, Zhang Y, Yue X, Huo J, Xiong D, Zhang P (2021) Green Chem 23:5549–5555

    Google Scholar 

  10. Chan SI, Yu SS-F, Liu C-C, Mou C-Y (2020) Curr Opin Green Sustain Chem 22:39–46

    Google Scholar 

  11. Kondo M, Tatewaki H, Masaoka S (2021) Chem Soc Rev 50:6790–6831

    PubMed  Google Scholar 

  12. Han L, Dong S, Wang E (2016) Adv Mater 28:9266–9291

    PubMed  Google Scholar 

  13. Zoubi WA, Ko YG (2017) Appl Organomet Chem 31:e3574

    Google Scholar 

  14. Sarabi MF, Bezaatpour A, Mahmoudi A (2021) J Coord Chem 74:1597–1612

    Google Scholar 

  15. Mubarak MQE, de Visser SP (2019) Dalton Trans 48:16899–16910

    PubMed  Google Scholar 

  16. Vrdoljak V, Pisk J, Prugovečki B, Agustin D, Novak P, Matković-Čalogović D (2016) RSC Adv 6:36384–36393

    Google Scholar 

  17. Bezaatpour A, Khatami S, Nejati K (2017) J Iran Chem Soc 14:2105–2115

    Google Scholar 

  18. Fakhimi P, Bezaatpour A, Amiri M, Szunerits S, Boukherroub R, Eskandari H (2019) ChemistrySelect 4:7116–7122

    Google Scholar 

  19. Topić E, Pisk J, Agustin D, Jendrlin M, Cvijanović D, Vrdoljak V, Rubčić M (2020) New J Chem 44:8085–8097

    Google Scholar 

  20. Pisk J, Rubčić M, Kuzman D, Cindrić M, Agustin D, Vrdoljak V (2019) New J Chem 43:5531–5542

    Google Scholar 

  21. Mihalinec J, Pajski M, Guillo P, Mandarić M, Bebić N, Pisk J, Vrdoljak V (2021) Catalysts 11:881

    Google Scholar 

  22. Bouzari N, Bezaatpour A, Babaei B, Amiri M, Boukherroub R, Szunerits S (2021) J Mol Liq 330:115690

    Google Scholar 

  23. Payami F, Bezaatpour A, Eskandari H (2018) Appl Organomet Chem 32:e3986

    Google Scholar 

  24. Kamyabi MA, Soleymani-Bonoti F, Bikas R, Hosseini-Monfared H, Arshadi N, Siczek M, Lis T (2015) Physc Chem Chem Physc 17:32161–32172

    Google Scholar 

  25. Asha TM, Kurup MRP (2020) J Mol Struct 1204:127553

    Google Scholar 

  26. Pisk J, Agustin D, Vrdoljak V (2020) Catal Commun 142:106027

    Google Scholar 

  27. Vrdoljak V, Pisk J, Agustin D, Novak P, Vuković JP, Matković-Čalogović D (2014) New J Chem 38:6176–6185

    Google Scholar 

  28. Baig N, Shelke GM, Kumar A, Sah AK (2016) Catal Lett 146:333–337

    Google Scholar 

  29. Cindrić M, Pavlović G, Katava R, Agustin D (2017) New J Chem 41:594–602

    Google Scholar 

  30. Maiti M, Thakurta S, Pilet G, Bauzá A, Frontera A (2021) J Mol Struct 1226:129346

    Google Scholar 

  31. Wang W, Agustin D, Poli R (2017) Mol Catal 443:52–59

    Google Scholar 

  32. Bikas R, Lippolis V, Noshiranzadeh N, Farzaneh-Bonab H, Blake AJ, Siczek M, Hosseini-Monfared H, Lis T (2017) Eur J Inorg Chem 2017:999–1006

    Google Scholar 

  33. Liu HY, Yang HH, Diao YX, Ye YF, Zou XL (2018) Russ J Coord Chem 44:572–578

    Google Scholar 

  34. Sutradhar M, Ribeiro APC, Guedes da Silva MFC, Palavra AMF, Pombeiro AJL (2020) Mol Catal 482:100356.

  35. Shen Y, Jiang P, Wai PT, Gu Q, Zhang W (2019) Catalysts 9:31

    Google Scholar 

  36. Emami M, Bikas R, Noshiranzadeh N, Kozakiewicz A, Lis T (2020) ACS Omega 5:13344–13357

    PubMed  PubMed Central  Google Scholar 

  37. Ather RA, Siddiqui ZN (2018) J Organomet Chem 868:164–174

    Google Scholar 

  38. Zhang W-Q, Zhang W-Y, Wang R-D, Ren C-Y, Li Q-Q, Fan Y-P, Liu B, Liu P, Wang Y-Y (2017) Cryst Growth Des 17:517–526

    Google Scholar 

  39. Lee H-H, Park I-H, Lee SS (2014) Inorg Chem 53:4763–4769

    PubMed  Google Scholar 

  40. Han M-L, Chang X-H, Feng X, Ma L-F, Wang L-Y (2014) CrystEngComm 16:1687–1695

    Google Scholar 

  41. Copéret C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V, Nagae H, Núñez-Zarur F, Zhizhko PA (2016) Chem Rev 116:323–421

    PubMed  Google Scholar 

  42. Qin R, Liu K, Wu Q, Zheng N (2020) Chem Rev 120:11810–11899

    PubMed  Google Scholar 

  43. Marceau E, Bonneviot L, Dzwigaj S, Lambert J-F, Louis C, Carrier X (2021) J Catal 396:104–121

    Google Scholar 

  44. Kondrat SA, van Bokhoven JA (2019) Top Catal 62:1218–1227

    Google Scholar 

  45. Liu L, Corma A (2021) Nat Catal 4:453–456

    Google Scholar 

  46. Heydari N, Bikas R, Shaterian M, Lis T (2022) RSC Adv 12:4813–4827

    PubMed  PubMed Central  Google Scholar 

  47. Goorchibeyg S, Bikas R, Soleimani M, Siczek M, Lis T (2022) J Mol Struct 1250:131774

    Google Scholar 

  48. Hosseini-Monfared H, Bikas R, Mahboubi-Anarjan P, Blake AJ, Lippolis V, Arslan NB, Kazak C (2014) Polyhedron 69:90–102

    Google Scholar 

  49. Kumar PA, Ha HP (2010) Catal Lett 136:177–184

    Google Scholar 

  50. Sonawane SA, Pore DM (2022) Catal Lett 152:3317–3331

    Google Scholar 

  51. Almulaiky YQ, Al-Harbi SA (2022) Catal Lett 152:28–42

    Google Scholar 

  52. Souza MA, Castro KKA, Almeida-Neto FWQ, Bandeira PN, Ferreira MKA, Marinho MM, Rocha MN, Brito DHA, SilvaMendes FR, Rodrigues THS, de Oliveira MR, Menezes JESA, Barreto ACH, Marinho ES, Lima-Neto P, Santos HS, Teixeira AMR (2022) J Mol Struct 1251:132064

    Google Scholar 

  53. Luo J, Jiang L, Ruan G, Li C, Du F (2021) RSC Adv 11:20439–20445

    PubMed  PubMed Central  Google Scholar 

  54. Mousazade Y, Mohammadi MR, Chernev P, Bikas R, Bagheri R, Song Z, Lis T, Dau H, Najafpour MM (2018) Catal Sci Technol 8:4390–4398

    Google Scholar 

  55. Zabihollahi Z, Bikas R, Hossaini-Sadr M, Kozakiewicz-Piekarz A, Soltani B (2022) J Mol Struct 1265:133356

    Google Scholar 

  56. Pousaneh E, Sadighian S, Bikas R, Hosseini-Monfared H, Sousaraei A, Siczek M, Lis T (2020) J Mol Struct 1199:127023

    Google Scholar 

  57. Bikas R, Shaghaghi Z, Heshmati-Sharabiani Y, Heydari N, Lis T (2022) Photosynth Res 154:383–395

    PubMed  Google Scholar 

  58. Balapoor L, Bikas R, Dargahi M (2020) Inorg Chim Acta 510:119734

    Google Scholar 

  59. Ruidas S, Mohanty B, Bhanja P, Erakulan ES, Thapa R, Das P, Chowdhury A, Mandal SK, Jena BK, Bhaumik A (2021) ChemistrySelect 22:5057–5064

    Google Scholar 

  60. Maurya MR, Singh D, Tomar R, Gupta P (2022) Inorg Chim Acta 532:120750

    Google Scholar 

  61. Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Munawar KS (2021) J Mol Struct 1245:131259

    Google Scholar 

  62. Lawal NS, Ibrahim H, Bala MD (2022) Catal Lett 152:1264–1275

    Google Scholar 

  63. Khalaf E, Alameri AA, Malviya J, Kumar TCA, Altalbawy FMA, Alfilh RHC, Kazemnejadi M (2022). Catal Lett. https://doi.org/10.1007/s10562-022-04210-0

    Article  Google Scholar 

  64. Vijayapritha S, Viswanathamurthi P (2020) J Organomet Chem 929:121555

    Google Scholar 

  65. October J, Mapolie SF (2020) Catal Lett 150:998–1010

    Google Scholar 

  66. Gurusamy S, Krishnaveni K, Sankarganesh M, Asha RN, Mathavan A (2022) J Mol Liq 345:117045

    Google Scholar 

  67. Sen N, Butcher RJ, Jasinski JP, Gupta SK (2021) J Mol Struct 1231:129955

    Google Scholar 

  68. Bikas R, Krawczyk MS, Lis T (2020) ChemistrySelect 22:6759–6764

    Google Scholar 

  69. Majumdar D, Das D, Nag S, Bhattacharyya M, Singh DK, Parai D, Bankura K, Mishra D (2020) J Mol Struct 1222:128951

    Google Scholar 

  70. Emami M, Shahroosvand H, Bikas R, Lis T, Pilkington M (2021) Inorg Chem 60:982–994

    PubMed  Google Scholar 

  71. Kuriakose D, Kurup MRP (2019) Polyhedron 170:749–761

    Google Scholar 

  72. Maurya MR, Tomar R, Gupta P, Avecilla F (2020) Polyhedron 186:114617

    Google Scholar 

  73. Bafti A, Razum M, Topić E, Agustin D, Pisk J, Vrdoljak V (2021) Mol Catal 512:111764

    Google Scholar 

  74. Cvijanović D, Pisk J, Pavlović G, Šišak-Jung D, Matković-Čalogović D, Cindrić M, Agustin D, Vrdoljak V (2019) New J Chem 43:1791–1802

    Google Scholar 

  75. Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Munawar KS, Ashfaq M, Tahir MN (2021) Polyhedron 208:115428

    Google Scholar 

  76. Maurya MR, Chauhan A, Arora S, Gupta P (2022) Catal Today 397–399:3–15

    Google Scholar 

  77. Safikhani-Golboos R, Ghorbanloo M, Bikas R, Sasani R, Małecki JG, Krawczyk MS, Siczek M (2022) Inorg Chim Acta 543:121188

    Google Scholar 

  78. Bikas R, Korabik M, Sanchiz J, Noshiranzadeh N, Mirzakhani P, Gałkowska A, Szeliga D, Kozakiewicz-Piekarz A (2021) J Solid State Chem 303:122484

    Google Scholar 

  79. Bikas R, Heydari N, Demeshko S, Lis T (2022) Inorg Chim Acta 539:121005

    Google Scholar 

  80. Darmakkolla SR, Tran H, Gupta A, Rananavare SB (2016) RSC Adv 6:93219–93230

    Google Scholar 

  81. Taskin OS, Aksu A, Cetintasoglu ME, Korkmaz NE, Torlak C, Balkis N (2018) J Liq Chromatogr Relat Tech 41:583–587

    Google Scholar 

  82. Xu YT, Guo Y, Song LX, Zhang K, Yuen MMF, Fu XZ, Sun R, Wong CP (2014) RSC Adv 4:58005–58010

    Google Scholar 

  83. Heydari N, Bikas R, Siczek M, Lis T (2023) Dalton Trans 52:421–433

    PubMed  Google Scholar 

  84. Ahmad Z, Mishra A (2020) J Mater Sci 31:4672–4676

    Google Scholar 

  85. Alshehri A, Narasimharao K (2021) Catal Lett 151:1025–1037

    Google Scholar 

  86. Imbault AL, Smith KJ (2016) Catal Lett 146:1886–1891

    Google Scholar 

  87. Rao BG, Sudarsanam P, Rangaswamy A, Reddy BM (2015) Catal Lett 145:1436–1445

    Google Scholar 

  88. Heracleous E, Lee AF, Vasalos IA, Lemonidou AA (2003) Catal Lett 88:47–53

    Google Scholar 

  89. Zhang Z, Liu B, Lv K, Sun J, Deng K (2014) Green Chem 16:2762–2770

    Google Scholar 

  90. Wang L, Peng M, Chen J, Hu T, Yuan K, Chen Y (2022) Adv Mater 34:2203744

    Google Scholar 

  91. Heydari N, Bikas R, Shaterian M, Lis T (2022) Appl Organomet Chem 37:e6939

    Google Scholar 

  92. Iijima Y, Asakawa D, Hiraoka K (2010) Surf Interface Anal 42:658–661

    Google Scholar 

  93. Heydari N, Bikas R, Shaterian M, Krawczyk MS, Lis T (2022) Appl Organomet Chem 37:e6976

    Google Scholar 

  94. Wang W, Guerrero T, Merecias SR, García-Ortega H, Santillan R, Daran JC, Farfán N, Agustin D, Poli R (2015) Inorg Chim Acta 431:176–183

    Google Scholar 

  95. Bondi R, Ehweiner MA, Belaj F, Mösch-Zanetti NC (2022) J Catal 416:344–351

    Google Scholar 

  96. Asha TM, Sithambaresan M, Kurup MRP (2019) Polyhedron 171:530–541

    Google Scholar 

  97. Guo Y, Xiao L, Li P, Zou W, Zhang W, Hou L (2019) Mol Catal 475:110498

    Google Scholar 

  98. Shen Y, Jiang P, Wai PT, Zhang W (2019) Catalysts 9:31

    Google Scholar 

  99. Romanowski G, Kira J (2019) Polyhedron 117:352–358

    Google Scholar 

  100. Maurya MR, Rana L, Avecilla F (2017) New J Chem 41:724–734

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Imam Khomeini International University and University of Zanjan for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahman Bikas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3025 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikas, R., Heydari, N., Asadollahi, P. et al. Efficient Epoxidation of Olefins by Silica Supported Dioxidomolybdenum(VI) Coordination Compounds. Catal Lett 154, 116–131 (2024). https://doi.org/10.1007/s10562-023-04300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04300-7

Keywords

Navigation