Skip to main content
Log in

“One-Pot” Construction of Networked AlCl3·6H2O@β-CD Composites by Mechanical Milling: A Green and Efficient Catalyst for the Synthesis of Bisindolylmethane Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The networked AlCl3·6H2O@β-CD composite was constructed by “one-pot” method via mechanical grinding for the first time. The results confirm that the formation of Al–O–Al and C-O–Al bonds is the key to the effective combination of AlCl3·6H2O and β-CD. The AlCl3·6H2O@β-CD plays a dual role as a catalyst and dispersant in the reaction system which leads to the high catalytic activity and stability for the synthesis of Bisindolylmethane compounds under solid-phase grinding conditions. Environmental friendliness and zero-waste are the most important features of this catalyst, offering the possibility of its wider application in the field of green synthesis and catalysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Kumar V, Turnbull WB, Kumar A (2022) Review on recent developments in biocatalysts for Friedel–Crafts reactions. ACS Catal. https://doi.org/10.1021/acscatal.2c01134

    Article  PubMed  Google Scholar 

  2. Kitanosono T, Masuda K, Xu P, Kobayashi S (2018) Catalytic organic reactions in water toward sustainable society. Chem Rev 118:679–746. https://doi.org/10.1021/acs.chemrev.7b00417

    Article  PubMed  Google Scholar 

  3. Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J (2022) Green chemistry in the synthesis of pharmaceuticals. Chem Rev 122:3637–3710. https://doi.org/10.1021/acs.chemrev.1c00631

    Article  PubMed  Google Scholar 

  4. Friscic T, Mottillo C, Titi HM (2020) Mechanochemistry for synthesis. Angew Chem Int Ed 59:1018–1029. https://doi.org/10.1002/anie.201906755

    Article  Google Scholar 

  5. Liu X, Li Y, Zeng L, Li X, Chen N, Bai S, He H, Wang Q, Zhang C (2022) A review on mechanochemistry: approaching advanced energy materials with greener force. Adv Mater. https://doi.org/10.1002/adma.202108327

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu Z, Wang G, Yuan S, Wu D, Liu W, Ma B, Bi S, Zhan H, Chen X (2019) Synthesis of bis(indolyl)methanes under dry grinding conditions, promoted by a Lewis acid-surfactant-SiO2-combined nanocatalyst. Green Chem 21:3542–3546. https://doi.org/10.1039/c9gc01073d

    Article  Google Scholar 

  7. Cserháti T, Forgács E, Oros G (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28:337–348. https://doi.org/10.1016/s0160-4120(02)00032-6

    Article  PubMed  Google Scholar 

  8. Liu Z, Liu Y (2022) Multicharged cyclodextrin supramolecular assemblies. Soc Rev 51:4786–4827. https://doi.org/10.1039/d1cs00821h

    Article  Google Scholar 

  9. Liu Z, Ye L, Xi J, Wang J, Feng Z-G (2021) Cyclodextrin polymers: structure, synthesis, and use as drug carriers. Prog Polym Sci 118:101408. https://doi.org/10.1016/j.progpolymsci.2021.101408

    Article  Google Scholar 

  10. Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N (2018) Cyclodextrins, from molecules to applications. Environ Chem Lett 16:1361–1375. https://doi.org/10.1007/s10311-018-0763-2

    Article  Google Scholar 

  11. Wang G, Wu Z, Liang Y, Liu W, Zhan H, Song M, Sun Y (2020) Exploring the coordination confinement effect of divalent palladium/zero palladium doped polyaniline-networking: as an excellent-performance nanocomposite catalyst for C-C coupling reactions. J Catal 384:177–188. https://doi.org/10.1016/j.jcat.2020.02.021

    Article  Google Scholar 

  12. Wang G, Hao P, Chang Y, Zhang Q, Liu W, Duan B, Zhan H, Bi S (2022) Copper and palladium bimetallic sub-nanoparticles were stabilized on modified polyaniline materials as an efficient catalyst to promote C-C coupling reactions in aqueous solution. Nanoscale 14:2256–2265. https://doi.org/10.1039/d1nr07640j

    Article  PubMed  Google Scholar 

  13. Zheng X, Li B, Wang Q, Wang D, Li Y (2022) Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res 15:7806–7839. https://doi.org/10.1007/s12274-022-4429-9

    Article  Google Scholar 

  14. Aronica LA, Albano G (2022) Supported metal catalysts for the synthesis of N-heterocycles. Catalysts 12:68. https://doi.org/10.3390/catal12010068

    Article  Google Scholar 

  15. Wilke M, Casati N (2022) A new route to polyoxometalates via mechanochemistry. Chem Sci 13:1146–1151. https://doi.org/10.1039/d1sc05111c

    Article  PubMed  Google Scholar 

  16. Howard JL, Cao Q, Browne DL (2018) Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem Sci 9:3080–3094. https://doi.org/10.1039/c7sc05371a

    Article  PubMed  PubMed Central  Google Scholar 

  17. Amrute AP, De Bellis J, Felderhoff M, Schuth F (2021) Mechanochemical synthesis of catalytic materials. Chemistry 27:6819–6847. https://doi.org/10.1002/chem.202004583

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dud M, Bris A, Jusinski I, Gracin D, Margetic D (2019) Mechanochemical Friedel–Crafts acylations. Beilstein J Org Chem 15:1313–1320. https://doi.org/10.3762/bjoc.15.130

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liang Y, Wang G, Wu Z, Liu W, Song M, Sun Y, Chen X, Zhan H, Bi S (2020) “Inorganic Polymer Flocculation Catalyst”-polyaluminum chloride as highly efficient and green catalyst for the Friedel–Crafts alkylation of bis(indolyl)methanes. Catal Commun 147:106136. https://doi.org/10.1016/j.catcom.2020.106136

    Article  Google Scholar 

  20. Liang Y, Wang G, Li X, Zhang Q, Zhan H, Bi S, Wu Z, Liu W (2022) In situ preparation of a ferric polymeric aluminum chloride–silica gel nanocatalyst by mechanical grinding and its solid-phase catalytic behavior in organic synthesis. New J Chem 46:15110–15117. https://doi.org/10.1039/d2nj01802k

    Article  Google Scholar 

  21. Wang G, Geng Y, Zhao Z, Zhang Q, Li X, Wu Z, Bi S, Zhan H, Liu W (2022) Exploring the in situ formation mechanism of polymeric aluminum chloride-silica gel composites under mechanical grinding conditions: as a high-performance nanocatalyst for the synthesis of xanthene and pyrimidinone compounds. ACS Omega 7:32577–32587. https://doi.org/10.1021/acsomega.2c04159

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hessel V, Tran NN, Asrami MR, Tran QD, Van Duc Long N, Escribà-Gelonch M, Tejada JO, Linke S, Sundmacher K (2022) Sustainability of green solvents-review and perspective. Green Chem 24:410–437. https://doi.org/10.1039/d1gc03662a

    Article  Google Scholar 

  23. Clarke CJ, Tu WC, Levers O, Brohl A, Hallett JP (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800. https://doi.org/10.1021/acs.chemrev.7b00571

    Article  PubMed  Google Scholar 

  24. Wang D, Saleh NB, Sun W, Park CM, Shen C, Aich N, Peijnenburg W, Zhang W, Jin Y, Su C (2019) Next-generation multifunctional carbon-metal nanohybrids for energy and environmental applications. Environ Sci Technol 53:7265–7287. https://doi.org/10.1021/acs.est.9b01453

    Article  PubMed  PubMed Central  Google Scholar 

  25. Torrez-Herrera JJ, Korili SA, Gil A (2020) Progress in the synthesis and applications of hexaaluminate-based catalysts. Catal Rev 64:592–630. https://doi.org/10.1080/01614940.2020.1831756

    Article  Google Scholar 

  26. Baran T, Nasrollahzadeh M (2020) Green synthesis of palladium nanocatalyst derived from the β-cyclodextrin used as effective heterogeneous catalyst for cyanation of aryl halides. Inorg Chem Commun 119:108117. https://doi.org/10.1016/j.inoche.2020.108117

    Article  Google Scholar 

  27. Li W, Lu B, Sheng A, Yang F, Wang Z (2010) Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin. J Mol Struct 981:194–203. https://doi.org/10.1016/j.molstruc.2010.08.008

    Article  Google Scholar 

  28. Karoyo AH et al (2014) Characterization and dynamic properties for the solid inclusion complexes of β-cyclodextrin and perfluorobutyric acid. J Phys Chem C 118(28):15460–15473

    Article  Google Scholar 

  29. Topuz F, Uyar T (2017) Cyclodextrin-functionalized mesostructured silica nanoparticles for removal of polycyclic aromatic hydrocarbons. J Colloid Interface Sci 497:233–241. https://doi.org/10.1016/j.jcis.2017.03.015

    Article  PubMed  Google Scholar 

  30. Deng R, You K, Yi L, Zhao F, Jian J, Chen Z, Liu P, Ai Q, Luo HA (2018) Solvent-free, low-temperature, highly efficient catalytic nitration of toluene with NO2 promoted by molecular oxygen over immobilized AlCl3–SiO2. Ind Eng Chem Res 57:12993–13000. https://doi.org/10.1021/acs.iecr.8b02786

    Article  Google Scholar 

  31. Duong LV, Wood BJ, Kloprogge JT (2005) XPS study of basic aluminum sulphate and basic aluminium nitrate. Mater Lett 59:1932–1936. https://doi.org/10.1016/j.matlet.2005.02.029

    Article  Google Scholar 

  32. Sadjadi S, Malmir M, Heravi MM, Raja M (2019) Magnetic hybrid of cyclodextrin nanosponge and polyhedral oligomeric silsesquioxane: efficient catalytic support for immobilization of Pd nanoparticles. Int J Biol Macromol 128:638–647. https://doi.org/10.1016/j.ijbiomac.2019.01.181

    Article  PubMed  Google Scholar 

  33. Khanna L, Mansi, Yadav S, Misra N, Khanna P (2021) “In water” synthesis of bis(indolyl)methanes: a review. Synth Commun 51:2892–2923. https://doi.org/10.1080/00397911.2021.1957113

    Article  Google Scholar 

  34. Yaghoubi A, Dekamin MG, Arefi E, Karimi B (2017) Propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (PMO-ICS-Pr-SO3H): a new and highly efficient recoverable nanoporous catalyst for the one-pot synthesis of bis(indolyl)methane derivatives. J Colloid Interface Sci 505:956–963. https://doi.org/10.1016/j.jcis.2017.06.055

    Article  PubMed  Google Scholar 

  35. Qi X, Ai H-J, Zhang N, Peng J-B, Ying J, Wu X-F (2018) Palladium-catalyzed carbonylative bis(indolyl)methanes synthesis with TFBen as the CO source. J Catal 362:74–77. https://doi.org/10.1016/j.jcat.2018.03.028

    Article  Google Scholar 

  36. Wu Z, Wang G, Li Z, Feng E, Liang Y, Zhan H, Liu W (2021) Solvent-free multi-component synthesis of unsymmetrical bis(indolyl)alkanes with Lewis acid-surfactant-SiO2 as nanocatalyst. Synth Commun 51:1206–1217. https://doi.org/10.1080/00397911.2021.1874016

    Article  Google Scholar 

  37. Wang G, Hao P, Liang Y, Liang Y, Liu W, Wen J, Li X, Zhan H, Bi S (2021) The new life of traditional water treatment flocculant polyaluminum chloride (PAC): a green and efficient micro-nano reactor catalyst in alcohol solvents. RSC Adv 12:655–663. https://doi.org/10.1039/d1ra08038e

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu X, Ma S, Toy PH (2019) Halogen bond-catalyzed Friedel–Crafts reactions of aldehydes and ketones using a bidentate halogen bond donor catalyst: synthesis of symmetrical bis(indolyl)methanes. Org Lett 21(22):9212–9216

    Article  PubMed  Google Scholar 

  39. Fu Y, Lu Z, Fang K, He X, Xu H, Hu Y (2020) Enzymatic approach to cascade synthesis of bis(indolyl)methanes in pure water. RSC Adv 10(18):10848–10853

    Article  PubMed  PubMed Central  Google Scholar 

  40. Das AK, Sepay N, Nandy S, Ghatak A, Bhar S (2020) Catalytic efficiency of β-cyclodextrin hydrate-chemoselective reaction of indoles with aldehydes in aqueous medium. Tetrahedron Lett 61(37):152231

    Article  Google Scholar 

  41. Veisi H, Mohammadi P, Ozturk T (2020) Design, synthesis, characterization, and catalytic properties of g-C3N4-SO3H as an efficient nanosheet ionic liquid for one-pot synthesis of pyrazolo[3,4-b]pyridines and bis(indolyl)methanes. J Mol Liq 303:112625

    Article  Google Scholar 

  42. Patil RC, Damate SA, Zambare DN, Patil SS (2021) Chickpea leaf exudates: a green Brønsted acid type biosurfactant for bis(indole)methane and bis(pyrazolyl)methane synthesis. New J Chem 45(20):9152–9162

    Article  Google Scholar 

  43. Chavan KA, Shukla M, Chauhan ANS, Maji S, Mali G, Bhattacharyya S, Erande RD (2022) Effective synthesis and biological evaluation of natural and designed bis(indolyl)methanes via taurine-catalyzed green approach. ACS Omega 7(12):10438–10446

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Ningxia Province (No. 2021AAC03057), the National Natural Science Foundation of China (No. 22162021), and the General Project of Key R&D Program of Ningxia Hui Autonomous Region (No. 2022BDE03013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanyi Liu or Haijuan Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5209 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, G., Li, X. et al. “One-Pot” Construction of Networked AlCl3·6H2O@β-CD Composites by Mechanical Milling: A Green and Efficient Catalyst for the Synthesis of Bisindolylmethane Compounds. Catal Lett 154, 270–279 (2024). https://doi.org/10.1007/s10562-023-04297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04297-z

Keywords

Navigation