Skip to main content

Advertisement

Log in

Effective Fe/K Catalyst for Fischer–Tropsch to Light Alkenes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Carbon-containing materials such as coal and biomass may be processed to syngas, which can be further converted to ethylene, propylene and butylenes directly or indirectly. Potassium-promoted iron catalysts, loaded over high temperature annealed supports ZnAl6O10 and ZnAl10O16, are developed and compared with other reference catalysts. All catalysts were investigated by XRD, ICP, nitrogen physisorption, FESEM, CO2-TPD, and direct Fischer–Tropsch to light alkenes (FTO) reaction tests. Without the assistance of any surface modifier or molecular sieve, at a total pressure of 2 MPa (≈ 20 bar), catalyst Fe/K/ZnAl6O10 reached a C2=–C4= hydrocarbon selectivity of 70%, which is one of the highest light alkene selectivity values documented for iron-based FTO catalysts. Relationships between characterization data and catalytic performance were discussed.

Graphical Abstract

Potassium-promoted iron catalysts, loaded over high temperature annealed supports ZnAl6O10 and ZnAl10O16, are compared with reference catalysts. Without the assistance of any surface modifier or molecular sieve, catalyst 15%Fe/2%K2O/83%ZnAl6O10 achieves its maximum CH selectivity of light alkenes (C2=–C4=) of 70%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stigsson C, Furusjö E, Börjesson P (2022) A model of an integrated hydrothermal liquefaction, gasification and Fischer-Tropsch synthesis process for converting lignocellulosic forest residues into hydrocarbons. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.126070

    Article  PubMed  Google Scholar 

  2. Aryal P, Tanksale A, Hoadley A (2022) Mini review of catalytic reactive flash volatilization of biomass for hydrogen-rich syngas production. Energ Fuel 36:4640–4652

    Article  Google Scholar 

  3. Chai J, Pestman R, Chen W, Donkervoet N, Dugulan AI, Men Z, Wang P, Hensen EJM (2022) Isotopic exchange study on the kinetics of fe carburization and the mechanism of the Fischer-Tropsch reaction. ACS Catal 12:2877–2887

    Article  Google Scholar 

  4. Zhao W, Wang J, Song K, Xu Z, Zhou L, Xiang H, Hao X, Yang Y, Li Y (2022) Eight-lumped kinetic model for Fischer-Tropsch wax catalytic cracking and riser reactor simulation. Fuel. https://doi.org/10.1016/j.fuel.2021.122028

    Article  Google Scholar 

  5. Igarashi NY, Li S, Ishii S, Iwasa A, Hasegawa T, Ketcong A, Yamamoto K, Asami K, Fujimoto K (2021) Mesoporous carbon-supported iron catalyst for Fischer-Tropsch synthesis. J Jpn Petrol Inst 64:17–21

    Article  Google Scholar 

  6. Jeske K, Kizilkaya AC, Lopez-Luque I, Pfaender N, Bartsch M, Concepcion P, Prieto G (2021) Design of cobalt Fischer-Tropsch catalysts for the combined production of liquid fuels and olefin chemicals from hydrogen-rich syngas. ACS Catal 11:4784–4798

    Article  PubMed  PubMed Central  Google Scholar 

  7. Song F, Yong X, Wu X, Zhang W, Ma Q, Zhao T, Tan M, Guo Z, Zhao H, Yang G, Tsubaki N, Tan Y (2022) FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation. Appl Catal B-Environ. https://doi.org/10.1016/j.apcatb.2021.120713

    Article  Google Scholar 

  8. Li R, Li Y, Li Z, Wei W, Hao Q, Shi Y, Ouyang S, Yuan H, Zhang T (2022) Electronically activated Fe5C2 via N-doped carbon to enhance photothermal syngas conversion to light olefins. ACS Catal 12:5316–5326

    Article  Google Scholar 

  9. Xu Y, Li X, Gao J, Wang J, Ma G, Wen X, Yang Y, Li Y, Ding M (2021) A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 371:610–613

    Article  PubMed  Google Scholar 

  10. Lama SMG, Weber JL, Heil T, Hofmann JP, Yan R, de Jong KP, Oschatz M (2018) Tandem promotion of iron catalysts by sodium-sulfur and nitrogen-doped carbon layers on carbon nanotube supports for the Fischer-Tropsch to olefins synthesis. Appl Catal A-Gen 568:213–220

    Article  Google Scholar 

  11. Torres Galvis HM, Koeken ACJ, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2013) Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of light alkenes. J Catal 303:22–30

    Article  Google Scholar 

  12. Lin T, Yu F, An Y, Qin T, Li L, Gong K, Zhong L, Sun Y, Qin T, Li L (2021) Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity. Acc Chem Res 54:1961–1971

    Article  PubMed  Google Scholar 

  13. Ding Y, Jiao F, Pan X, Ji Y, Li M, Si R, Pan Y, Hou G, Bao X (2021) Effects of proximity-dependent metal migration on bifunctional composites catalyzed syngas to olefins. ACS Catal 11:9729–9737

    Article  Google Scholar 

  14. Liu Z, Jia G, Zhao C, Xing Y (2021) Selective iron catalysts for direct Fischer-Tropsch synthesis to light olefins. Ind Eng Chem Res 60:6137–6146

    Article  Google Scholar 

  15. Jeske K, Rösler T, Belleflamme M, Rodenas T, Fischer N, Claeys M, Leitner W, Vorholt AJ, Prieto G (2022) Direct conversion of syngas to higher alcohols via tandem integration of Fischer-Tropsch synthesis and reductive hydroformylation. Angew Chem Int Ed. https://doi.org/10.1002/ange.202201004

    Article  Google Scholar 

  16. Chen Y, Ma L, Zhang R, Ye R, Liu W, Wei J, Ordomsky VV, Liu J (2022) Carbon-supported Fe catalysts with well-defined active sites for highly selective alcohol production from Fischer-Tropsch synthesis. Appl Catal B-Environ 312:121393

    Article  Google Scholar 

  17. Luo M, Li C, Liu Q, Yang Z, Wang Y, Li H (2022) Beta-Mo2C/gamma-Al2O3 catalyst for one step CO hydrogenation to produce alcohols. Catal Today 402:328–334

    Article  Google Scholar 

  18. Xuan Law Z, Pan Y-T, Tsai D-H (2022) Calcium looping of CO2 capture coupled to syngas production using Ni-CaO-based dual functional material. Fuel 328:125202

    Article  Google Scholar 

  19. Okati A, Reza Khani M, Shokri B, Rouboa A, Monteiro E (2022) Optimizing the operating conditions for hydrogen-rich syngas production in a plasma co-gasification process of municipal solid waste and coal using Aspen Plus. Int J Hydrog Energy 47:26891–26900

    Article  Google Scholar 

  20. Zhai P, Li Y, Wang M, Liu J, Cao Z, Zhang J, Xu Y, Liu X, Li Y-W, Zhu Q (2021) Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route. Chem 7:3027–3051

    Article  Google Scholar 

  21. Song L, Ouyang S, Li P, Ye J (2022) Highly selective light olefin production via photothermal Fischer-Tropsch synthesis over α/γ-Fe2O3-derived Fe5C2 under low pressure. J Mater Chem A 10:16243–16248

    Article  Google Scholar 

  22. Yahyazadeh A, Borugadda VB, Dalai AK, Zhang L (2022) Optimization of olefins’ yield in Fischer-Tropsch synthesis using carbon nanotubes supported iron catalyst with potassium and molybdenum promoters. Appl Catal A-Gen 643:118759

    Article  Google Scholar 

  23. Yang Y, Zhang H, Ma H, Qian W, Sun Q, Ying W (2022) Effect of alkalis (Li, Na, and K) on precipitated iron-based catalysts for high-temperature Fischer-Tropsch synthesis. Fuel 326:125090

    Article  Google Scholar 

  24. Yang Y, Qian W, Zhang H, Han Z, Ma H, Sun Q, Weiyong Y (2022) Effect of the Zr promoter on precipitated iron-based catalysts for high-temperature Fischer-Tropsch synthesis of light olefins. Catal Sci Technol 12:4624–4636

    Article  Google Scholar 

  25. Fang W, Wang C, Liu Z, Wang L, Liu L, Li H, Xu S, Zheng A, Qin X, Liu L (2022) Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. Science 377:406–410

    Article  PubMed  Google Scholar 

  26. Pan X, Jiao F, Miao D, Bao X (2021) Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chem Rev 121:6588–6609

    Article  PubMed  Google Scholar 

  27. Fatih Y, Burgun U, Sarioglan A, Atakül H (2023) Effect of sodium incorporation into Fe-Zn catalyst for Fischer-Tropsch synthesis to light olefins. Mol Catal. https://doi.org/10.1016/j.mcat.2022.112866

    Article  Google Scholar 

  28. Wen R, Thiessen J, Jess A (2022) Catalytic behavior and in situ x-ray diffraction of promoted iron catalysts for Fischer-Tropsch synthesis. Chem-Ing-Tech 94:1756–1764

    Article  Google Scholar 

  29. Wang A, Luo M, Lü B, Song Y, Yang Z, Li M, Shi B, Khan I (2022) MOF-derived porous carbon-supported bimetallic Fischer-Tropsch synthesis catalysts. Ind Eng Chem Res 61:3941–3951

    Article  Google Scholar 

  30. Zhang Y, Ma L, Tu J, Wang T, Li X (2015) One-pot synthesis of promoted porous iron-based microspheres and its Fischer-Tropsch performance. Appl Catal A-Gen 499:139–145

    Article  Google Scholar 

  31. Tian M, Wang XD, Zhang T (2016) Hexaaluminates: a review of the structure, synthesis and catalytic performance. Catal Sci Technol 6:1984–2004

    Article  Google Scholar 

  32. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Simmieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure & Appl Chem 57:603–619

    Article  Google Scholar 

  33. Dry ME, Shingles T, Boshoff LJ, Oosthuizen GJ (1969) Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis. J Catal 15:190–199

    Article  Google Scholar 

  34. Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) CO activation pathways and the mechanism of Fischer-Tropsch synthesis. J Catal 272:287–297

    Article  Google Scholar 

  35. Turner ML, Marsih N, Mann BE, Quyoum R, Long HC, Maitlis PM (2002) Investigations by 13C NMR spectroscopy of ethene-initiated catalytic CO hydrogenation. J Am Chem Soc 124:10456–10472

    Article  PubMed  Google Scholar 

  36. Thuene P, Moodley P, Scheijen F, Fredriksson H, Lancee R, Kropf J, Miller J, Niemantsverdriet JW (2012) The effect of water on the stability of iron oxide and iron carbide nanoparticles in hydrogen and syngas followed by in situ x-ray absorption spectroscopy. J Phys Chem C 116:7367–7373

    Article  Google Scholar 

  37. Wolf M, Fischer N, Claeys M (2020) Water-induced deactivation of cobalt-based Fischer-Tropsch catalysts. Nat Catal 3:962–965

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial grants from NSFC (No. 21571161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3756 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Jia, G., Zhao, C. et al. Effective Fe/K Catalyst for Fischer–Tropsch to Light Alkenes. Catal Lett 154, 303–313 (2024). https://doi.org/10.1007/s10562-023-04296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04296-0

Keywords

Navigation