Skip to main content

Advertisement

Log in

Cobalt Pyrophosphate Nanosheets Effectively Boost Photoelectrochemical Water Splitting Efficiency of BiVO4 Photoanodes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Photoanodes are a critical part of the photoelectrochemical (PEC) water splitting technology that drives the conversion of solar energy to hydrogen, while bismuth vanadate (BiVO4) is one of the most promising photoanode materials available. Here, we provide a simple spin-coating method to modify the PEC performance of BiVO4 by coating ultrathin cobalt pyrophosphate (Co2P2O7) nanosheets as a co-catalyst layer onto the surface of BiVO4. The Co2P2O7/BiVO4 composite photoanode achieved a photocurrent density of 3.93 mA cm−2 at 1.23 V versus RHE, which is 2.5 times higher than bare BiVO4 and considerably better than Co-Pi/BiVO4 and CoOx/BiVO4, with an improved charge injection efficiency of 71%. The key to the substantial enhancement of PEC performance is that Co2P2O7 nanosheets accelerate the charge transfer process all over the BiVO4 surface, not only as a water oxidation catalyst (OEC) layer accelerating the kinetic rate of the oxygen evolution reaction (OER) at the junction with the water, but also suppressing the rate of photogenerated electron–hole recombination at the Co2P2O7/BiVO4 junction. A potential mechanism for the enhanced PEC performance of Co2P2O7 nanosheets is proposed, and this work provides assistance in the design of transition metal pyrophosphate, cobalt-based nanomaterial morphologies to enhance the PEC properties of BiVO4.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473

    PubMed  Google Scholar 

  2. Moniz SJA, Zhu J, Tang JW (2014) Adv Energy Mater 4:1301590

    Google Scholar 

  3. Yu Q, Meng XG, Wang T, Li P, Ye JH (2015) Adv Func Mater 25:2686–2692

    Google Scholar 

  4. Lu Y, Yang YL, Fan XY, Li YQ, Zhou DH, Cai B, Wang LY, Fan K, Zhang K (2022) Adv Mater 34:2108178

    Google Scholar 

  5. Qi Y, Zhang JW, Kong Y, Zhao Y, Chen SS, Li D, Liu W, Chen YF, Xie TF, Cui JY, Li C, Domen K, Zhang FX (2022). Nat Commun 13:484. https://doi.org/10.1038/s41467-022-28146-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee BR, Lee MG, Park H, Lee TH, Lee SA, Bhat SSM, Kim C, Lee S, Jang HW (2019) ACS Appl Mater Interfaces 11:20004–20012

    PubMed  Google Scholar 

  7. Khoomortezaei S, Abdizadeh H, Golobostanfard MR (2019) ACS Appl Energy Mater 2:6428–6439

    Google Scholar 

  8. Pihosh Y, Minegishi T, Nandal V, Higashi T, Katayama M, Yamada T, Sasaki Y, Seki K, Suzuki Y, Nakabayashi M, Sugiyamaa M, Domen K (2020) Energy Environ Sci 13:1519–1530

    Google Scholar 

  9. Xiao YQ, Feng C, Fu J, Wang FZ, Li CL, Kunzelmann VF, Jiang CM, Nakabayashi M, Shibata N, Sharp ID, Domen K, Li YB (2020) Nat Catal 3:932–940

    Google Scholar 

  10. Chen D, Liu ZF, Zhang SC (2020) Appl Catal B-Environ 265:118580

    Google Scholar 

  11. Wang T, Long XF, Wei SQ, Wang P, Wang CL, Jin J, Hu GW (2020) ACS Appl Mater Interfaces 12:49705–49712

    PubMed  Google Scholar 

  12. Lee DK, Lee D, Lumley MA, Choi K-S (2019) Chem Soc Rev 48:2126–2157

    PubMed  Google Scholar 

  13. Kim TW, Choi KS (2014) Science 343:990–994

    PubMed  Google Scholar 

  14. Kim JH, Lee JS (2019) Adv Mater 31:1806938

    Google Scholar 

  15. Lee DK, Choi KS (2018) Nat Energy 3:53–60

    Google Scholar 

  16. Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Energy Environ Sci 4:5028–5034

    Google Scholar 

  17. Wang YX, Chen DM, Zhang JN, Balogun MS, Wang PS, Tong YX, Huang YC (2022) Adv Funct Mater 32:2112738

    Google Scholar 

  18. Wang GM, Ling YX, Lu XH, Qian F, Tong YX, Zhang JZ, Lordi V, Leao CR, Li Y (2013) J Phys Chem C 117:10957–10964

    Google Scholar 

  19. Wang SC, Chen P, Bai Y, Yun JH, Liu G, Wang LZ (2018) Adv Mater 30:1800486

    Google Scholar 

  20. Zhang BB, Wang L, Zhang YJ, Ding Y, Bi YP (2018) Angew Chem-Int Ed 57:2248–2252

    Google Scholar 

  21. Chang XX, Wang T, Zhang P, Zhang JJ, Li A, Gong JL (2015) J Am Chem Soc 137:8356–8359

    PubMed  Google Scholar 

  22. Bai SL, Han JY, Zhang KW, Zhao YY, Luo RX, Li DQ, Chen AF (2022) Int J Hydrogen Energy 47:4375–4385

    Google Scholar 

  23. Zhong DK, Choi S, Gamelin DR (2011) J Am Chem Soc 133:18370–18377

    PubMed  Google Scholar 

  24. Yan D, Fu X, Shang Z, Liu J, Luo H (2019) Chem Eng J 361:853–861

    Google Scholar 

  25. Zhou S, Chen K, Huang J, Wang L, Zhang M, Bai B, Liu H, Wang Q (2020) Appl Catal B-Environ 266:118513

    Google Scholar 

  26. Tan CL, Cao XH, Wu XJ, He QY, Yang J, Zhang X, Chen JZ, Zhao W, Han SK, Nam GH, Sindoro M, Zhang H (2017) Chem Rev 117:6225–6331

    PubMed  Google Scholar 

  27. Song YR, Zhang XM, Zhang YX, Zhai PL, Li ZW, Jin DF, Cao JQ, Wang C, Zhang B, Gao JF, Sun LC, Hou JG (2022) Angew Chem-Int Ed 61. https://doi.org/10.1002/ange.202200946

  28. Liu P, Yi J, Bao R, Zhao H (2022) Mater Today Chem 23:100747

    Google Scholar 

  29. Shi L, Xu CL, Jiang DX, Sun X, Wang XP, Wang QC, Zhang YL, Qu XF, Du FL (2019) Nanotechnology 30:075601

  30. He WH, Wang RR, Zhang L, Zhu J, Xiang X, Li F (2015) J Mater Chem A 3:17977–17982

    Google Scholar 

  31. Luo L, Wang ZJ, Xiang X, Yan DP, Ye JH (2020) ACS Catal 10:4906–4913

    Google Scholar 

  32. Nan F, Cai TY, Ju S, Fang L (2018) Appl Phys Lett 112:173902

    Google Scholar 

  33. Li B, Gu P, Feng YC, Zhang GX, Huang KS, Xue HG, Pang H (2017) Adv Funct Mater 27:1605784

    Google Scholar 

  34. Zhao S, Wang Y, Dong J, He C-T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z (2016) Nat Energy 1:16184

    Google Scholar 

  35. Tang FM, Cheng WR, Su H, Zhao X, Liu QH (2018) ACS Appl Mater Interfaces 10:6228–6234

    PubMed  Google Scholar 

  36. Kim H, Park J, Park I, Jin K, Jerng SE, Kim SH, Nam KT, Kang K (2015) Nat Commun 6:8253

    PubMed  Google Scholar 

  37. Chang YX, Shi NE, Zhao SL, Xu DD, Liu CY, Tang YJ, Dai ZH, Lan YQ, Han M, Bao JC (2016) ACS Appl Mater Interfaces 8:22534–22544

    PubMed  Google Scholar 

  38. Du HF, Ai W, Zhao ZL, Chen Y, Xu X, Zou CJ, Wu LS, Su L, Nan KK, Yu T, Li CM (2018) Small 14:1801068

    Google Scholar 

  39. Li B, Zhu RM, Xue HG, Xu Q, Pang H (2020) J Colloid Interface Sci 563:328–335

    PubMed  Google Scholar 

  40. Huang JW, Tian Y, Wang YN, Liu TT (2021) J Solid State Chem 299:122154

    Google Scholar 

  41. Du JY, Zhong XH, He HC, Huang J, Yang MJ, Ke GL, Wang J, Zhou Y, Dong FQ, Ren Q, Bian L (2018) ACS Appl Mater Interfaces 10:42207–42216

    PubMed  Google Scholar 

  42. Yaw CS, Ruan QS, Tang JW, Soh AK, Chong MN (2019) Chem Eng J 364:177–185

    Google Scholar 

  43. Wang QZ, He JJ, Shi YBA, Zhang SL, Niu TJ, She HD, Bi YP, Lei ZQ (2017) Appl Catal B-Environ 214:158–167

    Google Scholar 

  44. Tang YQ, Wang RR, Yang Y, Yan DP, Xiang X (2016) ACS Appl Mater Interfaces 8:19446–19455

    PubMed  Google Scholar 

  45. Wang YZ, Kong MG, Liu ZW, Lin CC, Zeng Y (2017) J Mater Chem A 5:24269–24274

    Google Scholar 

  46. Wang SC, He TW, Yun JH, Hu YX, Xiao M, Du AJ, Wang LZ (2018) Adv Funct Mater 28:1802685

    Google Scholar 

  47. Pan JB, Wang BH, Wang JB, Ding HZ, Zhou W, Liu X, Zhang JR, Shen S, Guo JK, Chen L, Au CT, Jiang LL, Yin SF (2021) Angew Chem-Int Ed 60:1433–1440

    Google Scholar 

  48. Kim TW, Ping Y, Galli GA, Choi KS (2015) Nat Commun 6:8769

    PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (22278345) and the Key Scientific Research Fund of Hunan Provincial Education Department (21A0089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jikai Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1730 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Zhou, G. & Liu, J. Cobalt Pyrophosphate Nanosheets Effectively Boost Photoelectrochemical Water Splitting Efficiency of BiVO4 Photoanodes. Catal Lett 154, 23–33 (2024). https://doi.org/10.1007/s10562-023-04293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04293-3

Keywords

Navigation