Skip to main content
Log in

Epoxidation of O2 and C3H6 on M1/PTA Single-Atom Catalyst: Theory and Calculation Simulations

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) computational studies of a series of single-atom catalysts (SACs).

Geometry of M1/PTA (M1 = Mn, Fe, Co, Ru, Rh, Pd, Os, Ir, Pt; phosphor tungstic acid (PTA) = [PW12O40]3−), different spin multi-gravity, adsorption site screening, metal–support interactions and M1/PTA SACs catalyzed catalytic cycle for O2 and olefin oxidation. Studies have shown that the most likely anchoring sites for isolated single atoms on M1/PTA SACs are quadruple holes on the surface of the PTA support. According to the PTA-Os bond, all single Os-based MOs are responsible for the non-bonding nature. It greatly maintains the catalytic activity of the PTA-loaded single-atom catalyst. Among these M1/PTA SACs, Os/PTA and Ru/PTA SACs have better activation ability for oxygen molecules, because the catalyst can produce dissociative adsorption of O2 and greatly weaken the bond energy of the O–O bond. Finally, the mechanism of Os/PTA SAC catalyzing the epoxidation of O2 and propylene is proposed. The reaction process of Os/PTA SAC activated O2 with propylene epoxidation, the relative energies, structures of intermediates and transition states were analyzed, and the reaction energy barrier of the rate determination step (RDS) was 24.48 kcal·mol−1 for the reaction between the second oxygen atom and C3H6. This indicates the reaction is thermodynamically and kinetically feasible and provides an important and reliable theoretical basis for the experimental synthesis and application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen X, Zou Y, Zhang M et al (2022) J Mater Chem A 10:6016–6022

    Google Scholar 

  2. Chu Y, Chen M, Liu C (2019) Inorg Chem Front 6:3482–3492

    Google Scholar 

  3. Fu L, Yan L, Lin L et al (2021) J Alloys Compd 875:159907

    Google Scholar 

  4. Shen H-M, Liu L, Qi B et al (2020) Mol Catal 493:111102

    Google Scholar 

  5. Huo J, Wei H, Fu L et al (2022). Chin Chem Lett. https://doi.org/10.1016/j.cclet.2022.02.066

    Article  Google Scholar 

  6. Zhu Y, Guo X, Ding X et al (2022) Mol Catal 518:112108

    Google Scholar 

  7. Mayer CR, Herson P, Thouvenot R (1999) Inorg Chem 38:6152–6158

    PubMed  Google Scholar 

  8. Özbek M, Onal I, van Santen R (2011) ChemCatChem 3:150–153

    Google Scholar 

  9. Qing-Shui H, Tang-Yi LI, Shi-Sheng Z et al (2021) Chinese. J Struct Chem 40:519–526

    Google Scholar 

  10. Villanneau R, Roucoux A, Beaunier P et al (2014) RSC Adv 4:26491–26498

    Google Scholar 

  11. Cao C, Ma D-D, Jia J et al (2021) Adv Mater 33:2008631

    Google Scholar 

  12. He C, Wang J, Fu L et al (2021) Chin Chem Lett 33:1051–1057

    Google Scholar 

  13. He C, Wang R, Yang H et al (2020) Appl Surf Sci 507:145076

    Google Scholar 

  14. Guillemot G, Matricardi E, Chamoreau L-M et al (2015) ACS Catal 5:7415–7423

    Google Scholar 

  15. He C, Wang R, Xiang D et al (2020) Appl Surf Sci 509:145392

    Google Scholar 

  16. Huber S, Cokoja M, Kühn FE (2014) J Organomet Chem 751:25–32

    Google Scholar 

  17. Huo J, Fu L, Zhao C et al (2021) Chin Chem Lett 32:2269–2273

    Google Scholar 

  18. Zhang Z, Wu Y, Du H et al (2022) J Alloys Compd 895:162017

    Google Scholar 

  19. Yan H, Su C, He J et al (2018) J Mater Chem A 6:101885

    Google Scholar 

  20. Yang L, Liu Z, Zhu S et al (2021) Mater Today Phys 16:100292

    Google Scholar 

  21. Yu J, He C, Huo J et al (2022) Int J Hydrog Energy 47:7738–7750

    Google Scholar 

  22. Yang C-H, Nosheen F, Zhang Z-C (2021) Rare Met 40:1412–1430

    Google Scholar 

  23. Zhang L-L, Sun M-J, Liu C-G (2019) Mol Catal 462:37–45

    Google Scholar 

  24. Li S, Wang Y, Liang J et al (2021) Mater Today Phys 18:100396

    Google Scholar 

  25. Peng H, Ren J, Wang Y et al (2021) Nano Energy 88:106307

    Google Scholar 

  26. Qiao B, Wang A, Yang X et al (2011) Nat Chem 3:634–641

    PubMed  Google Scholar 

  27. Ya-Qi CUI, Jiao-Xing XU, Mei-Lin W et al (2021) Chinese J Struct Chem 40:533–539

    Google Scholar 

  28. Wang T, Zhang B, Yin C-Q et al (2022) Rare Met 41:889–900

    Google Scholar 

  29. Yao S, Xu L, Wang J et al (2018) Mol Catal 448:144–152

    Google Scholar 

  30. Jia Y, Li F, Fan K et al (2021) Adv Powder Mater 1:100012

    Google Scholar 

  31. Jing H, Zhu P, Zheng X et al (2021) Adv Powder Mater 1:100013

    Google Scholar 

  32. Liu C-G, Zhang L-L, Chen X-M (2019) Dalton Trans 48:6228–6235

    PubMed  Google Scholar 

  33. Jameel U, Zhu M-Q, Chen X-Z et al (2016) J ZheJiang Univ-sc A 17:1000–1012

    Google Scholar 

  34. An C-H, Kang W, Deng Q-B et al (2022) Rare Met 41:378–384

    Google Scholar 

  35. Wang R, He C, Chen W et al (2021) Nanoscale 13:19247–19254

    PubMed  Google Scholar 

  36. He C, Wang H, Fu L et al (2021) Chin Chem Lett 33:990–994

    Google Scholar 

  37. Xu Z, Zhao H, Liang J et al (2020) Mater Today Phys 15:100280

    Google Scholar 

  38. Zhang H, Wei W, Wang S et al (2021) J Mater Chem A 9:4082–4090

    Google Scholar 

  39. Khan MS, Miura Y, Fukuyama Y et al (2022) Int J Hydrog Energy 47:13969–13979

    Google Scholar 

  40. Makowka O (1908) Ber Dtsch Chem Ges 41:943–944

    Google Scholar 

  41. Liu C, Li Q, Zhang J et al (2019) J Mater Chem A 7:4771–4776

    Google Scholar 

  42. Liu C, Jiang M, Su Z (2017) Inorg Chem Front 56:10496–10504

    Google Scholar 

  43. Zhang Q, He C, Huo J (2022) Comput Mater Sci 207:111306

    Google Scholar 

  44. Fu L, Wang R, Zhao CX et al (2021) Chem Eng J 414:128857

    Google Scholar 

  45. He C, Wang H, Huai LY et al (2013) J Chem Phys 138:144703

    PubMed  Google Scholar 

  46. He C, Zhang Q, Huo J et al (2022) Chin Chem Lett 33:3281–3286

    Google Scholar 

  47. Wang R, He C, Chen W et al (2021) Chin Chem Lett 32:3821–3824

    Google Scholar 

  48. Yu J, He C, Pu C et al (2021) Chin Chem Lett 32:3149–3154

    Google Scholar 

  49. Wu H, Zhang L-L, Wang J et al (2021) Green Chem 23:7528–7533

    Google Scholar 

  50. Lin L, Yan L, Fu L et al (2022) Fuel 308:122068

    Google Scholar 

  51. Zhang H, Zhang L-L, Tan X et al (2021) Ind Crops Prod 173:114126

    Google Scholar 

  52. He C, Sun R, Fu L et al (2022) Chin Chem Lett 33:527–532

    Google Scholar 

  53. Liu CG, Sun C, Jiang MX et al (2019) Phys Chem Chem Phys 21:9975–9986

    PubMed  Google Scholar 

  54. Li F, Li Y, Cheng Z et al (2015) ACS Catal 5:544–552

    Google Scholar 

  55. Liu CG, Chu YJ, Zhang LL et al (2019) Environ Sci Technol 53:12893–12903

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Natural Science Foundation of China (No. 21603109), the Natural Science Basic Research Program of Shaanxi (Program No. 2022JQ-108, 2022JQ-096) and the National Supercomputing Center in Zhengzhou.

Funding

The National Supercomputing Center in Zhengzhou,National Natural Science Foundation of China, Grant No. 21603109, Natural Science Basic Research Program of Shaanxi, Grant No. 2022JQ-108, 2022JQ-096

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaozheng He or Jinrong Huo.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1634 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., He, C. & Huo, J. Epoxidation of O2 and C3H6 on M1/PTA Single-Atom Catalyst: Theory and Calculation Simulations. Catal Lett 154, 71–80 (2024). https://doi.org/10.1007/s10562-023-04290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04290-6

Keywords

Navigation