Skip to main content
Log in

Electrostatic Self-Assembly of PEI-Imidazole Derivative and its Application in Catalytic Thermal Decomposition of AP

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ammonium perchlorate (AP) is a commonly used oxidant for rocket solid propellants. To control the thermal decomposition of AP, a new PEI-imidazole derivative (PEI-ICA) was synthesized. With the combination of Cu compound, the heat decomposition behavior of the AP’s composites was tuned, and the activation energy was also reduced. To explore the potential reason for the catalytic effect, a series of measurements were also carried out, which indicates the electrostatic self-assembly of PEI-ICA and its combination with Cu compound should be responsible for the different heat decomposition behavior of AP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig.11
Fig.12

Similar content being viewed by others

References

  1. Guo C, Lu Y, Tian Y, Guo H, Zhang X (2021) Porous SiO2 supported CuO as a promising catalyst on the thermal decomposition of ammonium perchlorate. Appl Organomet Chem. https://doi.org/10.1002/aoc.6215

    Article  Google Scholar 

  2. Liu X, Feng H, Li Y, Ma X, Yan Q (2022) Effects of high-energy multicore ferrocene-based catalysts on the thermal decomposition of ammonium perchlorate. Appl Organomet Chem. https://doi.org/10.1002/aoc.6605

    Article  Google Scholar 

  3. Trache D, Klapötke TM, Maiz L, Abd-Elghany M, DeLuca LT (2017) Recent advances in new oxidizers for solid rocket propulsion. Green Chem 19(20):4711–4736. https://doi.org/10.1039/c7gc01928a

    Article  CAS  Google Scholar 

  4. Benhammada A, Trache D, Chelouche S, Mezroua A (2020) Catalytic effect of green CuO nanoparticles on the thermal decomposition kinetics of ammonium perchlorate. Z Anorg Allg Chem 647(4):312–325. https://doi.org/10.1002/zaac.202000295

    Article  CAS  Google Scholar 

  5. Zhao W, Zhang T, Song N, Zhang L, Chen Z, Yang L, Zhou Z (2016) Assembly of composites into a core–shell structure using ultrasonic spray drying and catalytic application in the thermal decomposition of ammonium perchlorate. RSC Adv 6(75):71223–71231. https://doi.org/10.1039/c6ra08150a

    Article  CAS  Google Scholar 

  6. Jain S, Varma VK, Mahajan AK, Khire VH, Kandasubramanian B (2021) Thermal decomposition of ammonium perchlorate in the presence of copper tungsten oxide (CuWO4). Propellants, Explos, Pyrotech 46(5):758–765. https://doi.org/10.1002/prep.202000209

    Article  CAS  Google Scholar 

  7. Yan N, Qin L, Li J, Zhao F, Feng H (2018) Atomic layer deposition of iron oxide on reduced graphene oxide and its catalytic activity in the thermal decomposition of ammonium perchlorate. Appl Surf Sci 451:155–161. https://doi.org/10.1016/j.apsusc.2018.04.247

    Article  CAS  Google Scholar 

  8. Zhang G, Zhao F, Xu S, Li B, Wu R (2021) Research progress on control technology of low burning rate for double base propellants[J]. J Ordnance Equip Eng 42(12):16–22. https://doi.org/10.11809/bqzbgcxb2021.12.003

    Article  Google Scholar 

  9. Hu Y, Tao B, Shang F, Zhou M, Hao D, Fan R, Xia D, Yang Y, Pang A, Lin K (2020) Thermal decomposition of ammonium perchlorate over perovskite catalysts: catalytic decomposition behavior, mechanism and application. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.145849

    Article  Google Scholar 

  10. Zhou T, Qi X, Ma Y, Pei C, Duan X, Wu B (2020) Multichanneled hierarchical porous nanocomposite CuO/carbonized butterfly wing and its excellent catalytic performance for thermal decomposition of ammonium perchlorate. Appl Organomet Chem. https://doi.org/10.1002/aoc.5730

    Article  Google Scholar 

  11. Yang Y, Bai Y, Zhao F, Yao E, Yi J, Xuan C, Chen S (2016) Effects of metal organic framework Fe-BTC on the thermal decomposition of ammonium perchlorate. RSC Adv 6(71):67308–67314. https://doi.org/10.1039/c6ra12634k

    Article  CAS  Google Scholar 

  12. Davies JV, Jacobs PWM, Russell-JO A (1967) Thermal Decomposition of Ammonium Perchlorate. Trans Faraday Soc 63:1737–1748

    Article  CAS  Google Scholar 

  13. Tonda S, Kumar S, Kandula S, Shanker V (2014) Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J Mater Chem A. https://doi.org/10.1039/c3ta15358d

    Article  Google Scholar 

  14. Svetlov B, Koroban V (1968) Inhibition of thermal decomposition of ammonium perchlorate by the products. J Catal 10(1):101

    Article  Google Scholar 

  15. Yu Z, Chen L, Lu L, Yang X, Wang X (2009) DSC/TG-MS study on in situ catalytic thermal decomposition of ammonium perchlorate over CoC2O4. Chin J Catal 30(1):19–23. https://doi.org/10.1016/s1872-2067(08)60087-x

    Article  CAS  Google Scholar 

  16. The thermal decomposition of ammonium perchlorate - I. Introduction, experimental, analysis of gaseous products, and thermal decomposition experiments (1997). Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 227 (1168):115–132. doi:https://doi.org/10.1098/rspa.1954.0284

  17. Zhang Y, Li K, Liao J, Wei X, Zhang L (2020) Microwave-assisted synthesis of graphitic carbon nitride/CuO nanocomposites and the enhancement of catalytic activities in the thermal decomposition of ammonium perchlorate. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.143875

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Li J, Tang Q, Wei C, Huang J, Xu K (2021) Catalytic decomposition effect and mechanism of energetic complex Cu(NH3)4(AFT)2 towards fine AP. Catal Lett 152(9):2678–2687. https://doi.org/10.1007/s10562-021-03857-5

    Article  CAS  Google Scholar 

  19. Benhammada A, Trache D (2019) Thermal decomposition of energetic materials using TG-FTIR and TG-MS: a state-of-the-art review. Appl Spectrosc Rev 55(8):724–777. https://doi.org/10.1080/05704928.2019.1679825

    Article  CAS  Google Scholar 

  20. Yan Q-L, Zhao F-Q, Kuo KK, Zhang X-H, Zeman S, DeLuca LT (2016) Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog Energy Combust Sci 57:75–136. https://doi.org/10.1016/j.pecs.2016.08.002

    Article  Google Scholar 

  21. Zhu S, Cao X, Cao X, Feng Y, Lin X, Han K, Li X, Deng P (2021) Metal-doped (Fe, Nd, Ce, Zr, U) graphitic carbon nitride catalysts enhance thermal decomposition of ammonium perchlorate-based molecular perovskite. Mater Des. https://doi.org/10.1016/j.matdes.2020.109426

    Article  Google Scholar 

  22. Kechit H, Belkhiri S, Bhakta AK, Trache D, Mekhalif Z, Tarchoun AF (2021) The effect of iron decorated MWCNTs and iron-ionic liquid decorated MWCNTs onto thermal decomposition of ammonium perchlorate. Z Anorg Allg Chem 647(16–17):1607–1619. https://doi.org/10.1002/zaac.202100153

    Article  CAS  Google Scholar 

  23. Li X, Li S, Hu H, Sun T, Yang S (2022) Facet effects of α-Fe2O3 with different morphologies on the thermal decomposition of ammonium erchlorate. Catal Lett 152(11):3479–3488. https://doi.org/10.1007/s10562-021-03902-3

    Article  CAS  Google Scholar 

  24. Eslami A, Juibari NM, Hosseini SG (2016) Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate. Mater Chem Phys 181:12–20. https://doi.org/10.1016/j.matchemphys.2016.05.064

    Article  CAS  Google Scholar 

  25. Kumar H, Tengli PN, Mishra VK, Tripathi P, Bhushan A, Mishra PK (2017) The effect of reduced graphene oxide on the catalytic activity of Cu–Cr–O–TiO2 to enhance the thermal decomposition rate of ammonium perchlorate: an efficient fuel oxidizer for solid rocket motors and missiles. RSC Adv 7(58):36594–36604. https://doi.org/10.1039/c7ra06012b

    Article  CAS  Google Scholar 

  26. Deng P, Ren H, Jiao Q (2019) Enhanced the combustion performances of ammonium perchlorate-based energetic molecular perovskite using functionalized graphene. Vacuum. https://doi.org/10.1016/j.vacuum.2019.108882

    Article  Google Scholar 

  27. Yan J, Wang H, Jin B, Zeng M, Peng R (2021) Cu-MOF derived Cu/Cu2O/C nanocomposites for the efficient thermal decomposition of ammonium perchlorate. J Solid State Chem. https://doi.org/10.1016/j.jssc.2021.122060

    Article  Google Scholar 

  28. Liu L, Hao W, Huang Q, Jin B, Peng R (2022) Three new energetic coordination polymers based on nitrogen-rich heterocyclic ligand for thermal catalysis of ammonium perchlorate. J Solid State Chem. https://doi.org/10.1016/j.jssc.2022.123375

    Article  Google Scholar 

  29. Hanafi S, Trache D, He W, Xie W, Mezroua A, Yan Q (2020) Thermostable energetic coordination polymers based on functionalized GO and their catalytic effects on the decomposition of AP and RDX. J Phys Chem C 124(9):5182–5195. https://doi.org/10.1021/acs.jpcc.9b11070

    Article  CAS  Google Scholar 

  30. Zhang X, Xue Z, Nie H, Yan Q (2020) Preparation of energetic burn rate inhibitors and their negative catalytic effect on AP decomposition. Acta Armamentarii. https://doi.org/10.12382/bgxb.2022.0518

    Article  Google Scholar 

  31. Li X, Yang R, Yang Y (2009) Preparation of ultrafine calcium carbonate with different shapes and their applications in the HTPB propellant. Chin J Energ Mater 17(1):64–68

    Google Scholar 

  32. Nabid MR, Bide Y, Dastar F (2015) One pot synthesis of nickel nanoparticles stabilized on rGO/polyethyleneimine aerogel for the catalytic hydrogen generation. Catal Lett 145(9):1798–1807. https://doi.org/10.1007/s10562-015-1567-7

    Article  CAS  Google Scholar 

  33. Abrishami F, Soufi A, Mahyari M (2022) Cu(I)@g-C3N4/PEI: a new heterogeneous catalyst for glaser reaction in deep eutectic solvent. Catal Lett. https://doi.org/10.1007/s10562-022-04188-9

    Article  Google Scholar 

  34. Nabid MR, Bide Y, Shojaipour M, Dastar F (2015) Yolk/shell AuNPs@polyethyleneimine-derived carbon nanoparticles as nanoreactor for catalytic nitroarenes reduction. Catal Lett 146(1):229–237. https://doi.org/10.1007/s10562-015-1637-x

    Article  CAS  Google Scholar 

  35. Benhammada A, Trache D (2021) Green synthesis of CuO nanoparticles using Malva sylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior. J Therm Anal Calorim 147(2):1–16. https://doi.org/10.1007/s10973-020-10469-5

    Article  CAS  Google Scholar 

  36. Tarchoun AF, Trache D, Klapötke TM, Belmerabet M, Abdelaziz A, Derradji M, Belgacemi R (2020) Synthesis, characterization, and thermal decomposition kinetics of nitrogen-rich energetic biopolymers from aminated giant reed cellulosic fibers. Ind Eng Chem Res 59(52):22677–22689. https://doi.org/10.1021/acs.iecr.0c05448

    Article  CAS  Google Scholar 

  37. Hanafi S, Trache D, Mezroua A, Boukeciat H, Meziani R, Tarchoun AF, Abdelaziz A (2021) Optimized energetic HNTO/AN co-crystal and its thermal decomposition kinetics in the presence of energetic coordination nanomaterials based on functionalized graphene oxide and cobalt. RSC Adv 11(56):35287–35299. https://doi.org/10.1039/d1ra06367g

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Song X, Huang Q, Jin B, Peng R (2020) Preparation of desensitizing CL-20/rGO composites by in-situ reduction. Propellants, Explos, Pyrotech 45(8):1293–1299. https://doi.org/10.1002/prep.202000010

    Article  CAS  Google Scholar 

  39. Hao W, Jin B, Liao L, Luo L, Zhang J, Shen J, Peng R (2022) 1-Hydroxy-1,2,3,4-tetrazole and its transition metal complexes: a family of green high-energy catalysts for ammonium perchlorate. J Solid State Chem. https://doi.org/10.1016/j.jssc.2022.122896

    Article  Google Scholar 

  40. Huang T, Hao W, Jin B, Zhang J, Guo J, Luo L, Zhang Q, Peng R (2021) Novel energetic coordination compound [Cu(AT)4]Cl2 for catalytic thermal decomposition of ammonium perchlorate. J Solid State Chem. https://doi.org/10.1016/j.jssc.2021.122622

    Article  Google Scholar 

  41. Vara JA, Dave PN, Chaturvedi S (2019) The catalytic activity of transition metal oxide nanoparticles on thermal decomposition of ammonium perchlorate. Def Technol 15(4):629–635. https://doi.org/10.1016/j.dt.2019.04.002

    Article  Google Scholar 

  42. Lu Y, Chen J, Wang R, Xu P, Zhang X, Gao B, Guo C, Yang G (2019) Bio-inspired Cu-alginate to smartly enhance safety performance and the thermal decomposition of ammonium perchlorate. Appl Surf Sci 470:269–275. https://doi.org/10.1016/j.apsusc.2018.11.108

    Article  CAS  Google Scholar 

  43. Jacobs PWM, Russell-Jones A (1968) Sublimation of ammonium perchlorate. J Phys Chem 72:202–207

    Article  CAS  Google Scholar 

  44. Song Y, Chen W, Chu J, Su G, Mutikainen I, Turpeinen U, Reedijk J (2010) A dinuclear copper(II) compound of a bis(imidazole)-containing tripodal ligand: Crystal structure and EPR spectroscopic studies. Inorg Chem Commun 13(12):1538–1541. https://doi.org/10.1016/j.inoche.2010.09.007

    Article  CAS  Google Scholar 

  45. Küçük K, Çelik Y, Şahin R, Karabulut B, Andaç Ö, Dege N (2014) Molecular structure and EPR spectral studies of trans-Bis(perchlorato-κO)tetrakis(1-vinyl-1Himidazole-κN3)copper(II). Chem Phys Lett 592:59–63. https://doi.org/10.1016/j.cplett.2013.12.007

    Article  CAS  Google Scholar 

  46. Zhou Y, Cheng G, Wu B, Zhang H (2007) Tetrakis(1H-imidazole-κN3)(perchlorato-κO)copper(II) perchlorate dimethylamine disolvate. Acta Crystallogr Sect E: Struct Rep Online 63(9):m2285–m2286. https://doi.org/10.1107/s1600536807037440

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial support received from the National Natural Science Foundation of China (Grant Nos. 51972278 and 22005283), Project of State Key Laboratory of Environment-friendly Energy Materials (Southwest University of Science and Technology, no. 21fksy19), The Cooperation Foundation of Xi'an Modern Chemistry Research Institute (Grant No.204-J-2020-2634).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Huang or Rufang Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhao, C., Hu, T. et al. Electrostatic Self-Assembly of PEI-Imidazole Derivative and its Application in Catalytic Thermal Decomposition of AP. Catal Lett 154, 206–216 (2024). https://doi.org/10.1007/s10562-023-04288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04288-0

Keywords

Navigation