Skip to main content
Log in

Preparation of Nanoscale Ni–Cu Supported Over Hydrochar by Hydrothermal Method and Effect of Ni/Cu Ratio on Catalytic Performances in Dry Reforming of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, Ni–Cu alloy nanoparticle catalysts for dry reforming of methane (DRM) were synthesized by one-step hydrothermal method. The results demonstrated that the addition of Cu into Ni/BC could form Ni–Cu alloy and strengthened the electron transfer, which was beneficial to smaller Ni particle size formation and higher dispersion of Ni particles. When Ni/Cu ratio was increased from 0 to 7:1 (Ni7Cu1/BC), Ni particle size was decreased from 8.56 to 6.32 nm. CH4 and CO2 conversion rate over Ni/BC were 40.21% and 75.90%, which were increased to 89.41% and 97.64% over Ni7Cu1/BC. Especially, Cu addition would inhibit the reverse water gas shift reaction, and H2/CO was obviously increased from 0.63 (Ni/BC) to 0.96 (over Ni7Cu1/BC). However, the excess Cu addition suppressed the catalytic activity for DRM. TG and TEM revealed that there was no obvious graphitic carbon on the used Ni7Cu1/BC, and CH4/CO2 conversion rate was well kept after 24 h reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5
Fig. 6 
Fig. 7 
Fig. 8 

Similar content being viewed by others

References

  1. Zhu S, Feng L, Liu Y, Wang J, Yang D (2022) Adv Atmos Sci 39:1343–1359

    Article  Google Scholar 

  2. Yoro KO, Daramola MO (2020) Advances in Carbon Capture, In:  MR Rahimpour, M Farsi,  MA Makarem (eds.) Woodhead Publishing, Sawton

    Google Scholar 

  3. Zhao B, Yang Q, Qin L, Shan W, Zhang Q, Chen W, Han J (2021) Mol Catal 514:111869

    Article  Google Scholar 

  4. Yusuf M, Beg M, Ubaidullah M, Shaikh SF, Keong LK, Hellgardt K, Abdullah B (2021) Int J Hydrogen Energy

  5. Wang H, Han J, Bo Z, Qin L, Wang Y, Yu F (2019) Mol Catal 475:110486

    Article  Google Scholar 

  6. Han J, Liang Y, Qin L, Zhao B, Wang H, Wang Y (2019) Catal Lett 149:3224–3237

    Article  Google Scholar 

  7. Grabchenko M, Pantaleo G, Puleo F, Kharlamova TS, Zaikovskii VI, Vodyankina O, Liotta LF (2021) Catal Today 382:71–81

    Article  Google Scholar 

  8. Deng J, Bu K, Shen Y, Zhang X, Zhang J, Faungnawakij K, Zhang D (2022) Appl Catal B 302:120859

    Article  Google Scholar 

  9. le Saché E, Reina TR (2022) Prog Energy Combust Sci 89:100970

    Article  Google Scholar 

  10. Bu K, Deng J, Zhang X, Kuboon S, Yan T, Li H, Shi L, Zhang D (2020) Appl Catal B 267:118692

    Article  Google Scholar 

  11. Zhao Y, Li H, Li H (2018) Nano Energy 45:101–108

    Article  Google Scholar 

  12. Wang J, Mao Y, Zhang L, Li Y, Liu W, Ma Q, Wu D, Peng H (2022) Fuel 315:123167

    Article  Google Scholar 

  13. Zhang X, Zhang L, Peng H, You X, Peng C, Xu X, Liu W, Fang X, Wang Z, Zhang N, Wang X (2018) Appl Catal B 224:488–499

    Article  Google Scholar 

  14. Wu T, Zhang Q, Cai W, Zhang P, Song X, Sun Z, Gao L (2015) Appl Catal A 503:94–102

    Article  Google Scholar 

  15. Qiu H, Ran J, Niu J, Guo F, Ou Z (2021) Mol Catal 502:111360

    Article  Google Scholar 

  16. Chatla A, Ghouri MM, El Hassan OW, Mohamed N, Prakash AV, Elbashir NO (2020) Appl Catal A 602:117699

    Article  Google Scholar 

  17. Bian Z, Das S, Wai MH, Hongmanorom P, Kawi S (2017) ChemPhysChem 18:3117–3134

    Article  PubMed  Google Scholar 

  18. Song K, Lu M, Xu S, Chen C, Zhan Y, Li D, Au C, Jiang L, Tomishige K (2018) Appl Catal B 239:324–333

    Article  Google Scholar 

  19. Rahemi N, Haghighi M, Babaluo AA, Allahyari S, Jafari MF (2014) Energy Convers Manage 84:50–59

    Article  Google Scholar 

  20. Gao X, Ashok J, Kawi S (2022) Catal Today 397–399:581–591

    Article  Google Scholar 

  21. Qiu H, Ran J, Huang X, Ou Z, Niu J (2022) Int J Hydrogen Energy 47:34066–34074

    Article  Google Scholar 

  22. Han J, Zhang L, Zhao B, Qin L, Wang Y, Xing F (2019) Ind Crops Prod 128:290–297

    Article  Google Scholar 

  23. Wu Z, Yang B, Miao S, Liu W, Xie J, Lee S, Pellin MJ, Xiao D, Su D, Ma D (2019) ACS Catal 9:2693–2700

    Article  Google Scholar 

  24. Peng H, Zhang X, Han X, You X, Lin S, Chen H, Liu W, Wang X, Zhang N, Wang Z, Wu P, Zhu H, Dai S (2019) ACS Catal 9:9072–9080

    Article  Google Scholar 

  25. Chen F, Tao Y, Ling H, Zhou C, Liu Z, Huang J, Yu A (2020) Fuel 280:118612

    Article  Google Scholar 

  26. Sheng Y, Lin X, Yue S, Liu Y, Zou X, Wang X, Lu X (2021) Mater Adv 2:6722–6730

    Article  Google Scholar 

  27. Lee J-H, Lee E-G, Joo O-S, Jung K-D (2004) Appl Catal A 269:1–6

    Article  Google Scholar 

  28. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Fuel 86:1781–1788

    Article  Google Scholar 

  29. Mehrvarz E, Ghoreyshi AA, Jahanshahi M (2017) Front Chem Sci Eng 11:252–265

    Article  Google Scholar 

  30. Mirzaei S, Ahmadpour A, Shahsavand A, Nakhaei Pour A, LotfiKatooli L, Garmroodi Asil A, Pouladi B, Arami-Niya A (2020) Appl Surf Sci 533:147487

    Article  Google Scholar 

  31. Xie Z, Liao Q, Liu M, Yang Z, Zhang L (2017) Energy Convers Manage 153:526–537

    Article  Google Scholar 

  32. Rosli SNA, Abidin SZ, Osazuwa OU, Fan X, Jiao Y (2022) J CO2 Util 63:102109

    Article  Google Scholar 

  33. Zhang X, Xu Y, Zhang G, Wu C, Liu J, Lv Y (2022) Int J Hydrogen Energy 47:24388–24397

    Article  Google Scholar 

  34. Liu W, Li L, Lin S, Luo Y, Bao Z, Mao Y, Li K, Wu D, Peng H (2022) J Energy Chem 65:34–47

    Article  Google Scholar 

  35. Li L, Chen J, Zhang Q, Yang Z, Sun Y, Zou G (2020) J Clean Prod 274:122256

    Article  Google Scholar 

  36. Pastor-Pérez L, Gu S, Sepúlveda-Escribano A, Reina TR (2019) Int J Hydrogen Energy 44:4011–4019

    Article  Google Scholar 

  37. Figueiredo WT, Della Mea GB, Segala M, Baptista DL, Escudero C, Pérez-Dieste V, Bernardi F (2019) ACS Appl Nano Mater 2:2559–2573

    Article  Google Scholar 

  38. Zhang H, Wang W, Chen M, Wan H (2018) Appl Surf Sci 439:569–576

    Article  Google Scholar 

  39. Nataj SMM, Alavi SM, Mazloom G (2018) J Energy Chem 27:1475–1488

    Article  Google Scholar 

  40. Cesario MR, Souza GS, Loureiro FJA, Araújo AJM, Grilo JPF, Aouad S, Tidahy HL, Macedo DA, Fagg DP, Gennequin C, Abi-Aad E (2021) Ceram Int 47:33191–33201

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported by Technology Innovation Special Foundation of Hubei Province (Grant Nos. 2022BCA085, 2021BCA151, 2020BAB074 and 2020ZYYD019), and Wuhan Municipal Science and Technology Project (Grant No. 2020020601012275). We would like to thank Mrs Jinhui Zhou at the Analytical and Testing Center of Wuhan University of Science and Technology for the help on TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linbo Qin or Jun Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 705 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Qin, L., Zhao, B. et al. Preparation of Nanoscale Ni–Cu Supported Over Hydrochar by Hydrothermal Method and Effect of Ni/Cu Ratio on Catalytic Performances in Dry Reforming of Methane. Catal Lett 154, 144–154 (2024). https://doi.org/10.1007/s10562-023-04280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04280-8

Keywords

Navigation