Skip to main content
Log in

Non-thermal Plasma Synergizes High-Alkalinity Hydroxyapatite Supported RhFe Bimetallic Catalyst for Direct Catalytic Decomposition of N2O at Low Temperature

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAP) supported Rh, Fe, and Rh-Fe catalysts were prepared by impregnation, and the synergy effects between the catalyst and NTP (non-thermal plasma) on N2O catalytic decomposition were also investigated. CO2-TPD results show that HAP synthesized at high pH have a greater number of surface alkaline sites and promoted the adsorption of N2O. RhFe/HAP-11 catalyst exhibited 95.9% activity for the direct catalytic decomposition of N2O at 350 °C. Combining NTP with the RhFe/HAP-11 catalyst can significantly enhance the catalytic decomposition of N2O and greatly reduce the reaction temperature. The one-stage combination method enables the radicals generated by the plasma to participate in the reaction immediately on the catalyst surface, so it is more conducive to the N2O catalytic decomposition in the range of 150–200 °C. When NTP is applied, N2O conversion on RhFe/HAP-11 at 200 °C increases a lot from 7.1 to 90.0%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pedros PB, Askari O, Metghalchi H (2016) Water Res. 106:304–311

    Article  CAS  PubMed  Google Scholar 

  2. Jeong JM, Park JH, Baek JH, Hwang RH, Jeon SG, Yi KB (2016) Korean J. Chem. Eng. 34:81–86

    Article  Google Scholar 

  3. Niu Y, Shang T, Hui S, Zhang X, Lei Y, Lv Y, Wang S (2016) Fuel 185:316–322

    Article  CAS  Google Scholar 

  4. Abu-Zied B, Bawaked S, Kosa S, Schwieger W (2016) Catalysts 6:70

    Article  Google Scholar 

  5. Wu M, Wang H, Zhong L, Zhang X, Hao Z, Shen Q, Wei W, Qian G, Sun Y (2016) Chin. J. Catal. 37:898–907

    Article  CAS  Google Scholar 

  6. Imanaka N, Masui T (2012) Appl. Catal. A 431–432:1–8

    Article  Google Scholar 

  7. Sádovská G, Tabor E, Sazama P, Lhotka M, Bernauer M, Sobalík Z (2017) Catal. Commun. 89:133–137

    Article  Google Scholar 

  8. Shen Q, Zhang L, Wu M, Wang H, Sun N, Wei W, Sun Y (2017) Mater. Res. Bull. 87:1–5

    Article  CAS  Google Scholar 

  9. Zhang XY, Guan YY, Xiong Y, Zhao Y, Zhang SQ (2016) Mater. Res. Innovations 20:487–494

    Article  CAS  Google Scholar 

  10. Kondratenko EV, Brückner A (2010) J. Catal. 274:111–116

    Article  CAS  Google Scholar 

  11. Pacultová K, Karásková K, Strakošová J, Jirátová K, Obalová L (2015) CR Chim. 18:1114–1122

    Article  Google Scholar 

  12. Wilczkowska E, Krawczyk K, Petryk J, Sobczak JW, Kaszkur Z (2010) Appl. Catal. A 389:165–172

    Article  CAS  Google Scholar 

  13. Sowmiya M, Senthilkumar K (2016) Appl. Surf. Sci. 389:1220–1232

    Article  CAS  Google Scholar 

  14. Theis JR (2016) Catal. Today 267:93–109

    Article  CAS  Google Scholar 

  15. Lin Y, Meng T, Ma Z (2015) J. Ind. Eng. Chem. 28:138–146

    Article  CAS  Google Scholar 

  16. Kuboňová L, Fridrichová D, Wach A, Kuśtrowski P, Obalová L, Cool P (2015) Catal. Today 257:51–58

    Article  Google Scholar 

  17. Amrousse R, Tsutsumi A (2016) Catal. Sci. Technol. 6:438–441

    Article  CAS  Google Scholar 

  18. Piumetti M, Hussain M, Fino D, Russo N (2015) Appl. Catal. B 165:158–168

    Article  CAS  Google Scholar 

  19. Cui Y, Liu H, Lin Y, Ma Z (2016) J. Taiwan Inst. Chem. Eng. 67:254–262

    Article  CAS  Google Scholar 

  20. Sui C, Niu X, Wang Z, Yuan F, Zhu Y (2016) Catal. Sci. Technol. 6:8505–8515

    Article  CAS  Google Scholar 

  21. Qun S, Landong L, Zhengping H, Zhi Ping X (2008) Appl. Catal. B 84:734–741

    Article  Google Scholar 

  22. Yentekakis IV, Goula G, Panagiotopoulou P, Kampouri S, Taylor MJ, Kyriakou G, Lambert RM (2016) Appl. Catal. B 192:357–364

    Article  CAS  Google Scholar 

  23. Parres-Esclapez S, Such-Basañez I, Illán-Gómez MJ (2010) Salinas-Martínez de Lecea C, Bueno-López A. J. Catal. 276:390–401

    Article  CAS  Google Scholar 

  24. Xu X, Xu H, Kapteijn F, Moulijn JA (2004) Appl. Catal. B 53:265–274

    Article  CAS  Google Scholar 

  25. Tabor E, Jisa K, Novakova J, Bastl Z, Vondrova A, Zaveta K, Sobalik Z (2013) Microporous Mesoporous Mater. 165:40–47

    Article  CAS  Google Scholar 

  26. Patil BS, Cherkasov N, Lang J, Ibhadon AO, Hessel V, Wang Q (2016) Appl. Catal. B 194:123–133

    Article  CAS  Google Scholar 

  27. Beyer H, Emmerich J, Chatziapostolou K, Köhler K (2011) Appl. Catal. A 391:411–416

    Article  CAS  Google Scholar 

  28. Liu X, Wang Y, Wu R, Zhao Y (2021) Catal. Surv. Asia 25:168–179

    Article  CAS  Google Scholar 

  29. Zahmakiran M, Roman-Leshkov Y, Zhang Y (2012) Langmuir 28:60–64

    Article  PubMed  Google Scholar 

  30. De Vasconcelos BR, Zhao L, Sharrock P, Nzihou A, Doan Pham M (2016) Appl. Surf. Sci. 390:141–156

    Article  Google Scholar 

  31. Mondal S, Reyes MEDA, Pal U (2017) RSC Adv. 7:8633–8645

    Article  CAS  Google Scholar 

  32. Xu Z, Huang G, Yan Z, Wang N, Yue L, Liu Q (2019) ACS Omega 4:21998–22007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ogo S, Onda A, Iwasa Y, Hara K, Fukuoka A, Yanagisawa K (2012) J. Catal. 296:24–30

    Article  CAS  Google Scholar 

  34. Tsuchida T, Kubo J, Yoshioka T, Sakuma S, Takeguchi T, Ueda W (2008) J. Catal. 259:183–189

    Article  CAS  Google Scholar 

  35. Subramanian M, Vanangamudi G, Thirunarayanan G (2013) Spectrochimica acta Part A. Mol. Biomol. Spectrosc. 110:116–123

    Article  CAS  Google Scholar 

  36. Ma S, Zhao Y, Yang J, Zhang S, Zhang J, Zheng C (2017) Renew. Sustain. Energy Rev. 67:791–810

    Article  CAS  Google Scholar 

  37. Guan Z, Ren J, Chen D, Hong L, Li F, Wang D, Ouyang Y, Gao Y (2016) Korean J. Chem. Eng. 33:3102–3108

    Article  CAS  Google Scholar 

  38. Kim GT, Seo BH, Lee WJ, Park J, Kim MK, Lee SM (2017) Fuel 194:321–328

    Article  CAS  Google Scholar 

  39. Sang GJ, Kim KH, Shin DH (2007) Korean J. Chem. Eng. 24:522–526

    Article  Google Scholar 

  40. Huang C, Jiang Y, Ma Z, Xie P, Lin Y, Meng T, Miao C, Yue Y, Hua W, Gao Z (2016) J. Mol. Catal. A 420:73–81

    Article  CAS  Google Scholar 

  41. Huang C, Ma Z, Xie P, Yue Y, Hua W, Gao Z (2015) J Mol Catal. A 400:90–94

    Article  CAS  Google Scholar 

  42. Larichev YV, Netskina OV, Komova OV, Simagina VI (2010) Int. J. Hydrogen Energy 35:6501–6507

    Article  CAS  Google Scholar 

  43. Ratnayake S, Schild D, Maczka E, Jartych E, Luetzenkirchen J, Kosmulski M, Makehelwala M, Weragoda SK, Bandara A, Wijayawardana R, Chandrajith R, Indrarathne SP, Weerasooriya R (2016) Colloid Polym. Sci. 294:1557–1569

    Article  CAS  Google Scholar 

  44. Wan Z, Wang J (2016) Environ. Sci. Pollut. Res. Int. 23:18542–18551

    Article  CAS  PubMed  Google Scholar 

  45. Li X, Kong Y, Zhou S, Wang B (2016) J. Mater. Sci. 52:1432–1445

    Article  Google Scholar 

  46. Wang X, Cong S, Wang P, Ma J, Liu H, Ning P (2017) Sep. Purif. Technol. 174:174–182

    Article  CAS  Google Scholar 

  47. Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Adv. Colloid Interface Sci. 120:47–56

    Article  CAS  PubMed  Google Scholar 

  48. Giri S, Bhaumik M, Das R, Gupta VK, Maity A (2017) Appl. Catal. 202:207–216

    Article  CAS  Google Scholar 

  49. Pan H, Qiang Y (2014) Plasma Chem. Plasma Process 34:811–824

    Article  CAS  Google Scholar 

  50. Zhang ZS, Crocker M, Chen BB, Wang XK, Bai ZF, Shi C (2015) Catal. Today 258:386–395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by A Key Project of National Natural Science Foundation of China (NSFC) (22038011) and School-Enterprise Collaborative Innovation Foundation Research (20210643) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suitao Qi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Chen, H., Shi, L. et al. Non-thermal Plasma Synergizes High-Alkalinity Hydroxyapatite Supported RhFe Bimetallic Catalyst for Direct Catalytic Decomposition of N2O at Low Temperature. Catal Lett 153, 3724–3733 (2023). https://doi.org/10.1007/s10562-023-04269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04269-3

Keywords

Navigation