Skip to main content
Log in

Photocatalytic Degradation of Antibiotics by S-Scheme Heterojunctions Constructed by Thermally Sheared Flower-Like TiO2-Loaded PDA

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of polydopamine (PDA)-modified flower-like TiO2 photocatalysts was prepared by in situ auto-polymerization. The catalytic performance of the photocatalysts and the successful construction of S-scheme heterojunctions were evaluated and verified by a series of characterizations. A loading of 3% PDA/TiO2 (PT3) elicited showed the highest k-value (0.015 min−1) for the removal of tetracycline (TC), which was a multiple of that of PT2 (1.81) and PT4 (1.56). The main active substances for TC photodegradation were •O2 and h+. The catalytic performance of the photocatalysts and the successful construction of S-scheme heterojunctions were mainly evaluated and verified by EPR and XPS. The combination of organic (PDA) and inorganic (TiO2) semiconductors used herein is promising to treat antibiotic-like pollutants in wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Javid A, Mesdaghinia A, Nasseri S et al (2016) Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran. Iran J Environ Health Sci Engineer 14:4

    Article  Google Scholar 

  2. Nasseri S, Mahvi AH, Seyedsalehi M et al (2017) Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: effect of radical scavenger and water matrix. J Mol Liq 241:704–714

    Article  CAS  Google Scholar 

  3. Hoseini M, Safari GH, Kamani H et al (2013) Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis. Toxicol Environ Chem 95:1680–1689

    Article  CAS  Google Scholar 

  4. Chen J, Wang M, Hu J et al (2022) TiO2 nanosheet/NiO nanorod/poly(dopamine) ternary hybrids towards efficient visible light photocatalysis. Colloids Surf A 637:128197

    Article  CAS  Google Scholar 

  5. Zhang Y, Zhao Z, Chen J et al (2015) C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Appl Catal B 165:715–722

    Article  CAS  Google Scholar 

  6. Mao W-X, Lin X-J, Zhang W et al (2016) Core–shell structured TiO2 @polydopamine for highly active visible-light photocatalysis. Chem Commun 52:7122–7125

    Article  CAS  Google Scholar 

  7. Ong WL, Ng SWL, Zhang C et al (2016) 2D hydrated layered Ni(OH)2 structure with hollow TiO2 nanocomposite directed chromogenic and catalysis capabilities. J Mater Chem A 4:13307–13315

    Article  CAS  Google Scholar 

  8. Wang X, Wang J, Dong X et al (2016) Synthesis and catalytic performance of hierarchical TiO2 hollow sphere/reduced graphene oxide hybrid nanostructures. J Alloy Compd 656:181–188

    Article  CAS  Google Scholar 

  9. Cai J, Wu X, Zheng F et al (2017) Influence of TiO2 hollow sphere size on its photo-reduction activity for toxic Cr(VI) removal. J Colloid Interface Sci 490:37–45

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Hu X, Ma Y et al (2020) Nitrate-group-grafting-induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution. Chin J Catal 41:95–102

    Article  CAS  Google Scholar 

  11. Lu Y, Ou X, Wang W et al (2020) Fabrication of TiO2 nanofiber assembly from nanosheets (TiO2-NFs-NSs) by electrospinning-hydrothermal method for improved photoreactivity. Chin J Catal 41:209–218

    Article  CAS  Google Scholar 

  12. Zhang G, Kim G, Choi W (2014) Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): an alternative approach to solar activation of titania. Energy Environ Sci 7:954

    Article  CAS  Google Scholar 

  13. Hasanvandian F, Shokri A, Moradi M et al (2022) Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation. J Hazard Mater 423:127090

    Article  CAS  PubMed  Google Scholar 

  14. Hasanvandian F, Zehtab Salmasi M, Moradi M et al (2022) Enhanced spatially coupling heterojunction assembled from CuCo2S4 yolk-shell hollow sphere capsulated by Bi-modified TiO2 for highly efficient CO2 photoreduction. Chem Eng J 444:136493

    Article  CAS  Google Scholar 

  15. Lynge ME, van der Westen R, Postma A, Städler B (2011) Polydopamine—a nature-inspired polymer coating for biomedical science. Nanoscale 3:4916

    Article  CAS  PubMed  Google Scholar 

  16. Li R, Parvez K, Hinkel F et al (2013) Bioinspired wafer-scale production of highly stretchable carbon films for transparent conductive electrodes. Angew Chem 125:5645–5648

    Article  Google Scholar 

  17. Nam HJ, Kim B, Ko MJ et al (2012) A new mussel-inspired polydopamine sensitizer for dye-sensitized solar cells: controlled synthesis and charge transfer. Chem Eur J 18:14000–14007

    Article  CAS  PubMed  Google Scholar 

  18. Liu A, Zhao L, Bai H et al (2009) Polypyrrole actuator with a bioadhesive surface for accumulating bacteria from physiological media. ACS Appl Mater Interfaces 1(951–955):7

    CAS  Google Scholar 

  19. Deng H, Fei X, Yang Y et al (2021) S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem Eng J 409:127377

    Article  CAS  Google Scholar 

  20. Xia P, Cao S, Zhu B et al (2020) Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew Chem Int Ed 59:5218–5225

    Article  CAS  Google Scholar 

  21. He F, Meng A, Cheng B et al (2020) Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin J Catal 41:9–20

    Article  CAS  Google Scholar 

  22. Wang Y, Wang K, Wang J et al (2020) Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal. J Mater Sci Technol 56:236–243

    Article  CAS  Google Scholar 

  23. Xu Q, Zhang L, Cheng B et al (2020) S-Scheme Heterojunction Photocatal Chem 6:1543–1559

    CAS  Google Scholar 

  24. Sun X, Yan L, Xu R et al (2019) Surface modification of TiO2 with polydopamine and its effect on photocatalytic degradation mechanism. Colloids Surf A 570:199–209

    Article  CAS  Google Scholar 

  25. Meng A, Cheng B, Tan H et al (2021) TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Appl Catal B 289:120039

    Article  CAS  Google Scholar 

  26. Kim S, Moon G, Kim G et al (2017) TiO2 complexed with dopamine-derived polymers and the visible light photocatalytic activities for water pollutants. J Catal 346:92–100

    Article  CAS  Google Scholar 

  27. Chae A, Jo S, Choi Y et al (2017) Visible-light-driven photocatalysis with dopamine-derivatized titanium dioxide/N-doped carbon core/shell nanoparticles. J Mater Sci 52:5582–5588

    Article  CAS  Google Scholar 

  28. Hou X, Cai Y, Song X et al (2019) Electrospun TiO2 nanofibers coated with polydopamine for enhanced sunlight-driven photocatalytic degradation of cationic dyes. Surf Interface Anal 51:169–176

    Article  CAS  Google Scholar 

  29. Chen F, Zhao L, Yu W et al (2020) Dynamic monitoring and regulation of pentachlorophenol photodegradation process by chemiluminescence and TiO2/PDA. J Hazard Mater 399:123073

    Article  CAS  PubMed  Google Scholar 

  30. Nie N, Zhang L, Fu J et al (2018) Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Appl Surf Sci 441:12–22

    Article  CAS  Google Scholar 

  31. Zangmeister RA, Morris TA, Tarlov MJ (2013) Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 29:8619–8628

    Article  CAS  PubMed  Google Scholar 

  32. Shi J-L, Lang X (2020) Assembling polydopamine on TiO2 for visible light photocatalytic selective oxidation of sulfides with aerial O2. Chem Eng J 392:123632

    Article  CAS  Google Scholar 

  33. Zheng Y, Yu Z, Ou H et al (2018) Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv Funct Mater 28:1705407

    Article  Google Scholar 

  34. Hasanvandian F, Moradi M, Aghaebrahimi Samani S et al (2022) Effective promotion of g–C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-based semiconductors towards antibiotics degradation. Chemosphere 287:132273

    Article  CAS  PubMed  Google Scholar 

  35. Hayati F, Moradi S, Farshineh Saei S et al (2022) A novel, Z-scheme ZnO@AC@FeO photocatalyst, suitable for the intensification of photo-mediated peroxymonosulfate activation: performance, reactivity and bisphenol A degradation pathways. J Environ Manage 321:115851

    Article  CAS  PubMed  Google Scholar 

  36. Ji H, Du P, Zhao D et al (2020) 2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: catalytic “hot spots” at the rutile–anatase–titanate interfaces. Appl Catal B 263:118357

    Article  CAS  Google Scholar 

  37. Kang L, Xu L, Han Z et al (2022) Strategy to enhance photocatalytic performance of heterojunctional composite by dimensionality modulating: Insights into the scheme in interfacial charge migration and mass transfer. Chem Eng J 429:132355

    Article  CAS  Google Scholar 

  38. Dimitrijevic NM, Saponjic ZV, Bartels DM et al (2003) Revealing the nature of trapping sites in nanocrystalline titanium dioxide by selective surface modification. J Phys Chem B 107:7368–7375

    Article  CAS  Google Scholar 

  39. Moradi S, Isari AA, Hayati F et al (2021) Co-implanting of TiO2 and liquid-phase-delaminated g-C3N4 on multi-functional graphene nanobridges for enhancing photocatalytic degradation of acetaminophen. Chem Eng J 414:128618

    Article  CAS  Google Scholar 

  40. Li J, Li Z, Liu X et al (2021) Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat Commun 12:1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moradi M, Kakavandi B, Bahadoran A et al (2022) Intensification of persulfate-mediated elimination of bisphenol A by a spinel cobalt ferrite-anchored g-C3N4S- scheme photocatalyst: catalytic synergies and mechanistic interpretation. Sep Purif Technol 285:120313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No.51208068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Lei.

Ethics declarations

Competing interest

The authors declare that they have no competing, personal and financial interests in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Wang, S., Lei, C. et al. Photocatalytic Degradation of Antibiotics by S-Scheme Heterojunctions Constructed by Thermally Sheared Flower-Like TiO2-Loaded PDA. Catal Lett 153, 3783–3794 (2023). https://doi.org/10.1007/s10562-022-04268-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04268-w

Keywords

Navigation