Skip to main content
Log in

Chemical Kinetics of Serial Processes for Photogenerated Charges at Semiconductor Surface: A Classical Theoretical Calculation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The slow charge reactions at the semiconductor surface severely encumber the photocatalysis applications, which are elusive and complicated in a serial charge excitation-separation-reaction process. Both experimental and theoretical studies are essential in this area. Here, a classical numerical calculation of the charge reaction microkinetic is developed based on a simple consecutive charge separation and reaction model, a conservation law of photogenerated charges, and differential analysis. Several reaction conditions have been discussed to elucidate how a fast charge separation and reaction rate constant influence the apparent reaction kinetics. It is shown that a slower charge separation rate strongly limits the detection of higher-order reaction rates, and higher-order kinetics can be detected with all other processes faster than the reactions. This numerical calculation projects the possible limitations of kinetics study by transient techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available due financial support, but are available from the corresponding author on reasonable request.

References

  1. Byrne C, Subramanian G, Pillai SC (2018) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 6:3531–3555

    Article  CAS  Google Scholar 

  2. Yang X, Wang D (2018) Photocatalysis: from fundamental principles to materials and applications. ACS Appl Energy Mater 1:6657–6693

    Article  CAS  Google Scholar 

  3. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Li C, Domen K (2019) Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev 48:2109–2125

    Article  CAS  PubMed  Google Scholar 

  5. Wang Q, Domen K (2020) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985

    Article  CAS  PubMed  Google Scholar 

  6. Tilley SD (2019) Recent advances and emerging trends in photo-electrochemical solar energy conversion. Adv Energy Mater 9:1802877

    Article  Google Scholar 

  7. Govind Rajan A, Martirez JMP, Carter EA (2020) Why do we use the materials and operating conditions we use for heterogeneous (photo)electrochemical water splitting? ACS Catal 10:11177–11234

    Article  CAS  Google Scholar 

  8. Naldoni A, Altomare M, Zoppellaro G, Liu N, Kment S, Zboril R, Schmuki P (2019) Photocatalysis with reduced TiO2: From black TiO2 to cocatalyst-free hydrogen production. ACS Catal 9:345–364

    Article  CAS  PubMed  Google Scholar 

  9. Jang YJ, Lee JS (2019) Photoelectrochemical water splitting with p-type metal oxide semiconductor photocathodes. Chemsuschem 12:1835–1845

    Article  CAS  PubMed  Google Scholar 

  10. Hou HL, Zeng XK, Zhang XW (2020) Production of hydrogen peroxide by photocatalytic processes. Angew Chem, Int Ed 59:17356–17376

    Article  CAS  Google Scholar 

  11. Serpone N, Emeline AV, Ryabchuk VK, Kuznetsov VN, Artem’ev YM, Horikoshi S (2016) Why do hydrogen and oxygen yields from semiconductor-based photocatalyzed water splitting remain disappointingly low? Intrinsic and extrinsic factors impacting surface redox reactions. ACS Energy Lett 1:931–948

    Article  CAS  Google Scholar 

  12. Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K, Hisatomi T, Domen K (2020) Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581:411–414

    Article  CAS  PubMed  Google Scholar 

  13. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting – materials and challenges. Chem Soc Rev 46:4645–4660

    Article  CAS  PubMed  Google Scholar 

  14. Wu F, Yu YH, Yang H, German LN, Li ZQ, Chen JG, Yang WG, Huang L, Shi WM, Wang LJ, Wang XD (2017) Simultaneous enhancement of charge separation and hole transportation in a TiO2-SrTiO3 core-shell nanowire photoelectrochemical system. Adv Mater 29:1701432

    Article  Google Scholar 

  15. Qian HX, Liu ZF, Zhang B, Li JW, Ya J (2021) Optimized the carrier transport path and separation efficiency of 2D/2D heterojunction in photoelectrochemical water splitting. ChemCatChem 13:1940–1950

    Article  CAS  Google Scholar 

  16. Zhang P, Wang T, Gong JL (2018) Current mechanistic understanding of surface reactions over water-splitting photocatalysts. Chem 4:223–245

    Article  CAS  Google Scholar 

  17. Kanakaraju D, Glass BD, Oelgemoller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manage 219:189–207

    Article  CAS  PubMed  Google Scholar 

  18. Matafonova G, Batoev V (2018) Recent advances in application of uv light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: a review. Water Res 132:177–189

    Article  CAS  PubMed  Google Scholar 

  19. Ganguly P, Byrne C, Breen A, Pillai SC (2018) Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Appl Catal, B 225:51–75

    Article  CAS  Google Scholar 

  20. Mei B, Han K, Mul G (2018) Driving surface redox reactions in heterogeneous photocatalysis: the active state of illuminated semiconductor-supported nanoparticles during overall water-splitting. ACS Catal 8:9154–9164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang L, Mohamed HH, Dillert R, Bahnemann D (2012) Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J Photochem Photobiol, C 13:263–276

    Article  CAS  Google Scholar 

  22. Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF, Nørskov JK (2016) Materials for solar fuels and chemicals. Nat Mater 16:70

    Article  PubMed  Google Scholar 

  23. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: Insights into materials design. Science. https://doi.org/10.1126/science.aad4998

    Article  PubMed  Google Scholar 

  24. Martirez JMP, Carter EA (2019) Unraveling oxygen evolution on iron-doped β-nickel oxyhydroxide: the key role of highly active molecular-like sites. J Am Chem Soc 141:693–705

    Article  CAS  PubMed  Google Scholar 

  25. Zhou D, Chen L, Li J, Wu F (2018) Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: a state-of-the-art minireview. Chem Eng J 346:726–738

    Article  CAS  Google Scholar 

  26. Zhang K, Liu Y, Deng J, Xie S, Lin H, Zhao X, Yang J, Han Z, Dai H (2017) Fe2O3/3DOM BiVO4: high-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Appl Catal, B 202:569–579

    Article  CAS  Google Scholar 

  27. Shao H, Zhao X, Wang Y, Mao R, Wang Y, Qiao M, Zhao S, Zhu Y (2017) Synergetic activation of peroxymonosulfate by Co3O4 modified g-C3N4 for enhanced degradation of diclofenac sodium under visible light irradiation. Appl Catal, B 218:810–818

    Article  CAS  Google Scholar 

  28. Wang J, Xia Y, Zhao H, Wang G, Xiang L, Xu J, Komarneni S (2017) Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl Catal, B 206:406–416

    Article  CAS  Google Scholar 

  29. Mesa CA, Francàs L, Yang KR, Garrido-Barros P, Pastor E, Ma Y, Kafizas A, Rosser TE, Mayer MT, Reisner E, Grätzel M, Batista VS, Durrant JR (2020) Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat Chem 12:82–89

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Zhang H, Liu A, Chen C, Song W, Zhao J (2018) Rate-limiting O–O bond formation pathways for water oxidation on hematite photoanode. J Am Chem Soc 140:3264–3269

    Article  CAS  PubMed  Google Scholar 

  31. Chatman S, Zarzycki P, Rosso KM (2015) Spontaneous water oxidation at hematite (α-Fe2O3) crystal faces. ACS Appl Mater Interfaces 7:1550–1559

    Article  CAS  PubMed  Google Scholar 

  32. Yang X, Zheng Z, Hu J, Qu J, Ma D, Li J, Guo C, Li CM (2021) Observation of 4th-order water oxidation kinetics by time-resolved photovoltage spectroscopy. IScience. https://doi.org/10.1016/j.isci.2021.103500

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li L, Yang X, Lei Y, Yu H, Yang Z, Zheng Z, Wang D (2018) Ultrathin Fe-NiO nanosheets as catalytic charge reservoirs for a planar mo-doped BiVO4 photoanode. Chem Sci 9:8860–8870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Righi G, Plescher J, Schmidt F-P, Campen RK, Fabris S, Knop-Gericke A, Schlögl R, Jones TE, Teschner D, Piccinin S (2022) On the origin of multihole oxygen evolution in haematite photoanodes. Nat Catal 5:888–899

    Article  CAS  Google Scholar 

  35. Yang X, Wang Y, Li CM, Wang D (2021) Mechanisms of water oxidation on heterogeneous catalyst surfaces. Nano Res 14:3446–3457

    Article  CAS  Google Scholar 

  36. Ma X, Shi Y, Liu J, Li X, Cui X, Tan S, Zhao J, Wang B (2022) Hydrogen-bond network promotes water splitting on the TiO2 surface. J Am Chem Soc 144:13565–13573

    Article  CAS  PubMed  Google Scholar 

  37. Han J, Liu Z (2021) Optimization and modulation strategies of zinc oxide-based photoanodes for highly efficient photoelectrochemical water splitting. ACS Appl Energy Mater 4:1004–1013

    Article  CAS  Google Scholar 

  38. Cao G, Hu J, Qu J, Jin J, Yang X (2022) A numerical prediction of 4th-order kinetics for photocatalytic oxygen evolution reactions. Catal Lett. https://doi.org/10.1007/s10562-022-03959-8

    Article  Google Scholar 

  39. Wang X, Hu J, Qu J, Cao G, Jin J, Yang X (2022) Chemical kinetics of parallel consuming processes for photogenerated charges at the semiconductor surfaces: a theoretical classical calculation. Catal Lett 152:2470–2479

    Article  CAS  Google Scholar 

  40. Bard AJ, Faulkner LR (2000) Electrochemical methods: Fundamentals and applications, 2nd edn. John Wiley & Sons, Incorporated

    Google Scholar 

  41. Mayer MT, Lin Y, Yuan G, Wang D (2013) Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc Chem Res 46:1558–1566

    Article  CAS  PubMed  Google Scholar 

  42. Yang W, Prabhakar RR, Tan J, Tilley SD, Moon J (2019) Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem Soc Rev 48:4979–5015

    Article  CAS  PubMed  Google Scholar 

  43. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  PubMed  Google Scholar 

  44. Le Formal F, Pastor E, Tilley SD, Mesa CA, Pendlebury SR, Grätzel M, Durrant JR (2015) Rate law analysis of water oxidation on a hematite surface. J Am Chem Soc 137:6629–6637

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wheeler S, Deledalle F, Tokmoldin N, Kirchartz T, Nelson J, Durrant JR (2015) Influence of surface recombination on charge-carrier kinetics in organic bulk heterojunction solar cells with nickel oxide interlayers. Phys Rev Appl 4:024020

    Article  Google Scholar 

  46. Wheeler S, Bryant D, Troughton J, Kirchartz T, Watson T, Nelson J, Durrant JR (2017) Transient optoelectronic analysis of the impact of material energetics and recombination kinetics on the open-circuit voltage of hybrid perovskite solar cells. J Phys Chem C 121:13496–13506

    Article  CAS  Google Scholar 

  47. Azzouzi M, Calado P, Telford AM, Eisner F, Hou X, Kirchartz T, Barnes PRF, Nelson J (2020) Overcoming the limitations of transient photovoltage measurements for studying recombination in organic solar cells. Solar RRL 4:1900581

    Article  CAS  Google Scholar 

  48. Bediako DK, Surendranath Y, Nocera DG (2013) Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J Am Chem Soc 135:3662–3674

    Article  CAS  PubMed  Google Scholar 

  49. Wu K, Zhu H, Liu Z, Rodríguez-Córdoba W, Lian T (2012) Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures. J Am Chem Soc 134:10337–10340

    Article  CAS  PubMed  Google Scholar 

  50. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  51. Moir JW, Sackville EV, Hintermair U, Ozin GA (2016) Kinetics versus charge separation: Improving the activity of stoichiometric and non-stoichiometric hematite photoanodes using a molecular iridium water oxidation catalyst. J Phys Chem C 120:12999–13012

    Article  CAS  Google Scholar 

  52. Atkins P, Paula Jd (2005) Atkins’ physical chemistry, 8th edn. W H Freeman and Company, New York

    Google Scholar 

  53. Szaciłowski K (2008) Digital information processing in molecular systems. Chem Rev 108:3481–3548

    Article  PubMed  Google Scholar 

  54. Forsythe RC, Cox CP, Wilsey MK, Müller AM (2021) Pulsed laser in liquids made nanomaterials for catalysis. Chem Rev 121:7568–7637

    Article  CAS  PubMed  Google Scholar 

  55. Mei W, Yang X, Li L, Tong Y, Lei Y, Li P, Zheng Z (2020) Rational electrochemical recycling of spent LiFePO4 and LiCoO2 batteries to Fe2O3/CoPi photoanodes for water oxidation. ACS Sustain Chem Eng 8:3606–3616

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The fund for the research is obtained from the National Natural Science Foundation of China (Project. No. 22008163), the projects (20KJB150042 and 21KJB150038) from Natural Science Research Project of Higher Education Institutions in Jiangsu Province, the projects from Natural Science Foundation of Jiangsu Province (BK20210867 and BK20180103) and the University Startup. We thank Mr. Guangming Cao and Xinwei Wang for checking the equations.

Funding

Natural Science Foundation of Jiangsu Province, BK20180103, BK20210867, Natural Science Research Project of Higher Education Institutions in Jiangsu Province, 20KJB150042, 21KJB150038, National Natural Science Foundation of China, 22008163

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Xiaogang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10562_2022_4267_MOESM1_ESM.docx

Supplementary file1 (DOCX 1319 kb)—The online version contains supplementary materials available at https://doi.org/10.1007

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Shu, Y., Gong, M. et al. Chemical Kinetics of Serial Processes for Photogenerated Charges at Semiconductor Surface: A Classical Theoretical Calculation. Catal Lett 153, 3750–3760 (2023). https://doi.org/10.1007/s10562-022-04267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04267-x

Keywords

Navigation