Skip to main content
Log in

Cobalt Supported on Carbonized MgAl2O4 Spinel as Efficient Catalyst for CO Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrogenation of carbon monoxide (Fischer–Tropsch synthesis) is a promising route to ultraclean motor fuels, base oils and petrochemicals on the basis of non-petroleum feed such as natural gas, coal and biomass. Although cobalt-based industrial catalysts for this process are in operation for many years, they still need to be improved in terms of specific activity and selectivity to target hydrocarbons. This paper describes the effect of catalyst support coating with carbon on the formation of cobalt active phase and catalytic performance in CO hydrogenation. Carbonization of Mg–Al spinel was performed by impregnating with aqueous glucose solution followed by thermal treatment in inert atmosphere. Thus prepared carbonized material was used for cobalt deposition by incipient wetness impregnation method. The catalysts were characterized by N2 adsorption–desorption, scanning electron microscopy, thermoanalytical measurements combined with mass spectrometry of released gases, X-ray diffraction and in situ magnetic measurements during activation in H2 flow. Catalytic performance in Fischer–Tropsch synthesis was assessed at T = 210 °C, P = 20 bar. The size of Co3O4 crystallites in calcined catalysts and metallic cobalt in activated catalysts decreases with carbon content in the support. Cobalt precursor is reduced completely to metal within 2 h in typical activation conditions for FTS cobalt catalysts: H2 flow, 450 °C. Activity in CO hydrogenation decreases while selectivity to higher hydrocarbons increases with carbon content. High proportion of olefins in synthesized light hydrocarbons (> 65%) is a remarkable feature of the elaborated catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anderson RB, Kölbel H, Ralek M (1984) The Fischer-Tropsch Synthesis. Academic Press, New York

    Google Scholar 

  2. Speight JG (2014) Gasification of Unconventional. Gulf Professional Publishing, Amsterdam, Feedstocks

    Google Scholar 

  3. Khodakov AY, Chu W, Fongarl P (2007) Advances in the development of novel cobalt fischer-tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744. https://doi.org/10.1021/cr050972v

    Article  CAS  PubMed  Google Scholar 

  4. de Klerk A (2008) Fischer-tropsch refining: technology selection to match molecules. Green Chem 10:1249–1279. https://doi.org/10.1039/b813233j

    Article  CAS  Google Scholar 

  5. Iglesia E (1997) Design, synthesis, and use of cobalt-based fischer-tropsch synthesis catalysts. Appl Catal A 161:59–78. https://doi.org/10.1016/S0926-860X(97)00186-5

    Article  CAS  Google Scholar 

  6. van Steen E, Prinsloo FF (2002) Comparison of preparation methods for carbon nanotubes supported iron fischer-tropsch catalysts. Catal Today 71:327–334. https://doi.org/10.1016/S0920-5861(01)00459-X

    Article  Google Scholar 

  7. Teimouri Z, Abatzoglou N, Dalai AK (2021) Kinetics and selectivity study of fischer-tropsch synthesis to C5+ hydrocarbons: a review. Catalysts 11:330. https://doi.org/10.3390/catal11030330

    Article  CAS  Google Scholar 

  8. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263–281. https://doi.org/10.1016/S0926-860X(02)00195-3

    Article  CAS  Google Scholar 

  9. Zhang Q, Kang J, Wang Y (2010) Development of novel catalysts for fischer-tropsch synthesis: tuning the product selectivity. ChemCatChem 2:1030–1058

    Article  CAS  Google Scholar 

  10. Torres Galvis HM, de Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3:2130–2149. https://doi.org/10.1021/cs4003436

    Article  CAS  Google Scholar 

  11. Cheng K, Ordomsky VV, Virginie M, Legras B, Chernavskii PA, Kazak V, Cordier C, Paul S, Wang Y, Khodakov AY (2014) Support effects in high temperature fischer-tropsch synthesis on iron catalysts. Appl Catal A 488:66–77. https://doi.org/10.1016/j.apcata.2014.09.033

    Article  CAS  Google Scholar 

  12. Tavasoli A, Sadagiani K, Khorashe F, Seifkordi AA, Rohani AA (2008) Nakhaeipour A (2008) Cobalt supported on carbon nanotubes—a promising novel fischer-tropsch synthesis catalyst. Fuel Process Technol 89:491–498

    Article  CAS  Google Scholar 

  13. Fu T, Li Z (2015) Review of recent development in co-based catalysts supported on carbon materials for fischer-tropsch synthesis. Chem Eng Sci 135:3–20. https://doi.org/10.1016/j.ces.2015.03.007

    Article  CAS  Google Scholar 

  14. Chen Y, Wei J, Duyar MS, Ordomsky VV, Khodakov AY, Liu J (2021) Carbon-based catalysts for fischer-tropsch synthesis. Chem Soc Rev 50:2337–2366. https://doi.org/10.1039/D0CS00905A

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Q, Huang S, Han X, Chen J, Wang J, Rykov A, Wang Y, Wang M, Lv J, Ma X (2021) Highly active and controllable MOF-derived carbon nanosheets supported iron catalysts for fischer-tropsch synthesis. Carbon 173:364–375. https://doi.org/10.1016/j.carbon.2020.11.019

    Article  CAS  Google Scholar 

  16. Lu J, Yang L, Xu B, Wu Q, Zhang D, Yuan S, Zhai Y, Wang X, Fan X, Hu Z (2014) Promotion effects of nitrogen doping into carbon nanotubes on supported iron fischer-tropsch catalysts for lower olefins. ACS Catal 4:613–621. https://doi.org/10.1021/cs400931z

    Article  CAS  Google Scholar 

  17. Xiong H, Jewell LL, Coville NJ (2015) Shaped carbons as supports for the catalytic conversion of syngas to clean fuels. ACS Catal 5:2640–2658. https://doi.org/10.1021/acscatal.5b00090

    Article  CAS  Google Scholar 

  18. Bezemer GL, van Laak A, van Dillen AJ, de Jong KP (2004) Stud Surf Sci Catal 147:259–264. https://doi.org/10.1016/S0167-2991(04)80061-2

    Article  CAS  Google Scholar 

  19. Karimi S, Tavasoli A, Mortazavi Y, Karimi A (2015) Cobalt supported on graphene—a promising novel fischer-tropsch synthesis catalyst. Appl Catal A 499:188–196. https://doi.org/10.1016/j.apcata.2015.04.024

    Article  CAS  Google Scholar 

  20. Cheng K, Subramanian V, Carvalho A, Ordomsky VV, Wang Y, Khodakov AY (2016) The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for fischer-tropsch synthesis. J Catal 337:260–271. https://doi.org/10.1016/j.jcat.2016.02.019

    Article  CAS  Google Scholar 

  21. Subramanian V, Ordomsky VV, Legras B, Cheng K, Cordie C, Chernavskii PA, Khodakov AY (2016) Design of iron catalysts supported on carbon–silica composites with enhanced catalytic performance in high-temperature fischer-tropsch synthesis. Catal Sci Technol 6:4953–4961. https://doi.org/10.1039/c6cy00060f

    Article  CAS  Google Scholar 

  22. Chernavskii PA, Kazantsev RV, Pankina GV, Maslakov KI, Lunin BS, Eliseev OL (2019) Carbon–silica composite as an effective support for iron fischer-tropsch synthesis catalysts. Energ Technol 7:1800961. https://doi.org/10.1002/ente.201800961

    Article  CAS  Google Scholar 

  23. Chernavskii PA, Kazantsev RV, Pankina GV, Pankratov DA, Maksimov SV, Eliseev OL (2021) Unusual effect of support carbonization on the structure and performance of Fe/MgAl2O4 fischer-tropsch catalyst. Energ Technol 9:2000877. https://doi.org/10.1002/ente.202000877

    Article  CAS  Google Scholar 

  24. Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) Study of Pt-promoted cobalt CO hydrogenation catalysts. J Catal 156:85–95. https://doi.org/10.1006/jcat.1995.1234

    Article  CAS  Google Scholar 

  25. Chernavskii PA, Khodakov AY, Pankina GV, Girardon JS, Quinet E (2006) In situ characterization of the genesis of cobalt metal particles in silica-supported fischer-tropsch catalysts using foner magnetic method. Appl Catal A 306:108–119. https://doi.org/10.1016/j.apcata.2006.03.033

    Article  CAS  Google Scholar 

  26. Lapidus A, Krylova A, Kazanskii V, Borovkov V, Zaitsev A, Rathousky J, Zukal A, Janˇcálková M (1991) Hydrocarbon synthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts part I. physico-chemical properties of 10% cobalt/alumina and 10% cobalt/silica. Appl Catal 73:65–81. https://doi.org/10.1016/0166-9834(91)85113-A

    Article  CAS  Google Scholar 

  27. Ehrhardt C, Gjikaj M, Brockner W (2005) Thermal decomposition of cobalt nitrato compounds: preparation of anhydrous cobalt(II)nitrate and its characterisation by infrared and raman spectra. Thermochim Acta 432:36–40

    Article  CAS  Google Scholar 

  28. Borg Ø, Eri S, Blekkan EA, Storsæter S, Wigum H, Rytter E, Holmen A (2007) Fischer-tropsch synthesis over γ -alumina-supported cobalt catalysts: effect of support variables. J Catal 248:89–100. https://doi.org/10.1016/j.jcat.2007.03.008

    Article  CAS  Google Scholar 

  29. Chernyak SA, Ivanov AS, Maksimov SV, Maslakov KI, Isaikina OY, Chernavskii PA, Kazantsev RV, Eliseev OL, Savilov SS (2020) Fischer-tropsch synthesis over carbon-encapsulated cobalt and iron nanoparticles embedded in 3D-framework of carbon nanotubes. J Catal 389:270–284. https://doi.org/10.1016/j.jcat.2020.06.011

    Article  CAS  Google Scholar 

  30. Bezemer GL, Biter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the fischer-tropsch reaction studied with carbon nanofiber supported catalysts. J A C S 128:3956–3964. https://doi.org/10.1021/ja058282w

    Article  CAS  Google Scholar 

  31. Khodakov AY (2009) Fischer-tropsch synthesis: relations between structure of cobalt catalysts and their catalytic performance. Catal Today 144:251–257. https://doi.org/10.1016/j.cattod.2008.10.03

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg L. Eliseev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

No experiments involving human tissue was carried out.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernavskii, P.A., Pankina, G.V., Kazantsev, R.V. et al. Cobalt Supported on Carbonized MgAl2O4 Spinel as Efficient Catalyst for CO Hydrogenation. Catal Lett 153, 3678–3688 (2023). https://doi.org/10.1007/s10562-022-04260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04260-4

Keywords

Navigation