Skip to main content
Log in

High Dispersed Pd, Pt Supported on La, Ce-Alumina for Excellent Low Temperature Toluene Oxidation: Effect of Calcination Temperature and Ascorbic Acid Reduction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Seeking highly dispersed noble metals catalysts with varied valence, together with oxygen species and Lewis acid regulation are an important way to meet high efficiency toluene oxidation. Herein, the catalyst of 1 wt.% Pt and 1 wt.% Pd loaded on Al2O3 modified with La, Ce (PtPd/LCA), is synthesized through the adjustment of different calcination temperature from 250 to 550 °C under ascorbic acid reduction. Their redox, surface oxygen species, surface species acid properties and reaction mechanism were systematically characterized by H2-TPR, O2-TPD, XPS, pyridine-IR and in-situ DRIFTS. PtPd/LCA-250 totally eliminats toluene at 175 °C under 60,000 mL−1 g−1 h−1, together with superior water resistance and stable performance. Lower calcinated temperature and reduction of ascorbic acid, which leading to the proper co-existence of Pd and PdO, together with the abundant surface chemically adsorbed oxygen species and Lewis acid sites, is responsible for better catalytic activity. The catalyst could be a step forward in designing efficient and facile technologies for abatement of VOCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guan S, Huang Q, Ma J et al (2020) HCHO Removal by MnO2(x)–CeO2: influence of the synergistic effect on the catalytic activity. Ind Eng Chem Res 59(2):596–608

    Article  CAS  Google Scholar 

  2. Zhao P, Li X, Liao W, Wang Y et al (2019) Understanding the role of NbOx on Pt/Al2O3 for effective catalytic propane oxidation. Ind Eng Chem Res 58(48):21945–21952

    Article  CAS  Google Scholar 

  3. Cao L, Liu W, Luo Q et al (2019) Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565(7741):631–635

    Article  CAS  PubMed  Google Scholar 

  4. Hou Z, Dai L, Liu Y et al (2021) Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium–cobalt catalysts for benzene oxidation. Appl Catal, B 285:119844

    Article  CAS  Google Scholar 

  5. Huang S, Zhang C, He H (2013) Effect of pretreatment on Pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature. J Environ Sci 25(6):1206–1212

    Article  CAS  Google Scholar 

  6. Liotta LF, Ousmane M, Di Carlo G et al (2009) Catalytic removal of toluene over Co3O4–CeO2 mixed oxide catalysts: comparison with Pt/Al2O3. Catal Lett 127(3):270–276

    Article  CAS  Google Scholar 

  7. Tahsini N, Yang A-C, Streibel V et al (2022) Colloidal platinum-copper nanocrystal alloy catalysts surpass platinum in low-temperature propene combustion. J Am Chem Soc 144(4):1612–1621

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Hu C, Nemoto Y, Tateyama Y et al (2010) On the role of ascorbic acid in the synthesis of single-crystal hyperbranched platinum nanostructures. Cryst Growth Des 10(8):3454–3460

    Article  CAS  Google Scholar 

  9. Chen Z, Mao J, Zhou R (2019) Preparation of size-controlled Pt supported on Al2O3 nanocatalysts for deep catalytic oxidation of benzene at lower temperature. Appl Surf Sci 465:15–22

    Article  CAS  Google Scholar 

  10. Skoglundh M, Löwendahl LO, Otterated JE (1991) Combinations of platinum and palladium on alumina supports as oxidation catalysts. Appl Catal, A 77(1):9–20

    Article  CAS  Google Scholar 

  11. Chen Z, Li J, Yang P et al (2019) Ce-modified mesoporous γ-Al2O3 supported Pd-Pt nanoparticle catalysts and their structure-function relationship in complete benzene oxidation. Chem Eng J 356:255–261

    Article  CAS  Google Scholar 

  12. Yashnik SA, Denisov SP, Danchenko NM et al (2016) Synergetic effect of Pd addition on catalytic behavior of monolithic platinum–manganese–alumina catalysts for diesel vehicle emission control. Appl Catal, B 185:322–336

    Article  CAS  Google Scholar 

  13. Mortola VB, Damyanova S, Zanchet D et al (2011) Surface and structural features of Pt/CeO2-La2O3-Al2O3 catalysts for partial oxidation and steam reforming of methane. Appl Catal, B 107(3):221–236

    Article  CAS  Google Scholar 

  14. Cheng J, Xu Y, Liu Z et al (2019) Mo-based catalyst supported on binary ceria-lanthanum solid solution for sulfur-resistant methanation: effect of la dopant. Ind Eng Chem Res 58(5):1803–1811

    Article  CAS  Google Scholar 

  15. Lv X, Cai S, Chen J et al (2021) Tuning the degradation activity and pathways of chlorinated organic pollutants over CeO2 catalyst with acid sites: synergistic effect of Lewis and Brønsted acid sites. Catal Sci Technol 11(13):4581–4595

    Article  CAS  Google Scholar 

  16. Sun K, Lu W, Wang M et al (2004) Characterization and catalytic performances of La doped Pd/CeO2 catalysts for methanol decomposition. Appl Catal, A 268(1):107–113

    Article  CAS  Google Scholar 

  17. Li X, Ma J, Yang L et al (2018) Oxygen vacancies induced by transition metal doping in γ-MnO2 for highly efficient ozone decomposition. Environ Sci Technol 52(21):12685–12696

    Article  CAS  PubMed  Google Scholar 

  18. Mo S, Li S, Li W et al (2016) Excellent low temperature performance for total benzene oxidation over mesoporous CoMnAl composited oxides from hydrotalcites. J Mater Chem A 4(21):8113–8122

    Article  CAS  Google Scholar 

  19. Tang W, Wu X, Li S et al (2015) Co-nanocasting synthesis of mesoporous Cu–Mn composite oxides and their promoted catalytic activities for gaseous benzene removal. Appl Catal, B 162:110–121

    Article  CAS  Google Scholar 

  20. Sun P, Wang W, Weng X et al (2018) Alkali potassium induced HCl/CO2 selectivity enhancement and chlorination reaction inhibition for catalytic oxidation of chloroaromatics. Environ Sci Technol 52(11):6438–6447

    Article  CAS  PubMed  Google Scholar 

  21. Weng X, Shi B, Liu A et al (2019) Highly dispersed Pd/modified-Al2O3 catalyst on complete oxidation of toluene: role of basic sites and mechanism insight. Appl Surf Sci 497:143747

    Article  CAS  Google Scholar 

  22. Souza M, Aranda G, Schmal M (2001) Reforming of methane with carbon dioxide over Pt/ZrO2/Al2O3 catalysts. J Catal 204(2):498–511

    Article  CAS  Google Scholar 

  23. Ho PH, Woo J-W, Feizie Ilmasani R et al (2021) The role of Pd–Pt interactions in the oxidation and sulfur resistance of bimetallic Pd–Pt/γ-Al2O3 diesel oxidation catalysts. Ind Eng Chem Res 60(18):6596–6612

    Article  CAS  Google Scholar 

  24. Ferrandon M, Ferrand B, Björnbom E et al (2001) Copper oxide–platinum/alumina catalysts for volatile organic compound and carbon monoxide oxidation: synergetic effect of cerium and lanthanum. J Catal 202(2):354–366

    Article  CAS  Google Scholar 

  25. Wang H, Yang W, Tian P et al (2017) A highly active and anti-coking Pd-Pt/SiO2 catalyst for catalytic combustion of toluene at low temperature. Appl Catal, A 529:60–67

    Article  CAS  Google Scholar 

  26. Chen C, Chen F, Zhang L et al (2015) Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chem Commun 51(27):5936–5938

    Article  CAS  Google Scholar 

  27. He C, Shen Q, Liu M (2014) Toluene destruction over nanometric palladium supported ZSM-5 catalysts: influences of support acidity and operation condition. J Porous Mater 21(5):551–563

    Article  CAS  Google Scholar 

  28. Persson K, Pfefferle D, Schwartz W et al (2007) Stability of palladium-based catalysts during catalytic combustion of methane: the influence of water. Appl Catal, B 74(3):242–250

    Article  CAS  Google Scholar 

  29. Ding X, Qiu J, Liang Y et al (2019) New insights into excellent catalytic performance of the Ce-modified catalyst for NO oxidation. Ind Eng Chem Res 58(19):7876–7885

    Article  CAS  Google Scholar 

  30. El Moll H, Nohra B, Mialane P et al (2011) Lanthanide polyoxocationic complexes: experimental and theoretical stability studies and lewis acid catalysis. Chem Eur J 17(50):14129–14138

    Article  CAS  PubMed  Google Scholar 

  31. Jin Q, Shen Y, Zhu S et al (2017) Rare earth ions (La, Nd, Sm, Gd, and Tm) regulate the catalytic performance of CeO2/Al2O3 for NH3-SCR of NO. J Mater Res 32(12):2438–2445

    Article  CAS  Google Scholar 

  32. Morterra C, Bolis V, Magnacca G (1996) Surface characterization of modified aluminas. Part 4.—Surface hydration and Lewis acidity of CeO2–Al2O3 systems. J Chem Soc, Faraday Trans 92(11):1991–1999

    Article  CAS  Google Scholar 

  33. Alejandro-Martín S, Valdés H, Manero M-H et al (2018) Catalytic ozonation of toluene using chilean natural zeolite: the key role of brønsted and lewis acid sites. Catalysts 8(5):211

    Article  Google Scholar 

  34. Li P, He C, Cheng J et al (2011) Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: effects of preparation methods. Appl Catal, B 101(3):570–579

    Article  CAS  Google Scholar 

  35. Brun M, Berthet A, Bertolini JC (1999) XPS, AES and Auger parameter of Pd and PdO. J Electron Spectrosc Relat Phenom 104(1):55–60

    Article  CAS  Google Scholar 

  36. Peng R, Li S, Sun X et al (2018) Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl Catal, B 220:462–470

    Article  CAS  Google Scholar 

  37. Kan J, Deng L, Li B et al (2017) Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation. Appl Catal, A 530:21–29

    Article  CAS  Google Scholar 

  38. Li J, Li W, Liu G et al (2016) Tricobalt tetraoxide-supported palladium catalyst derived from metal organic frameworks for complete benzene oxidation. Catal Lett 146(7):1300–1308

    Article  CAS  Google Scholar 

  39. Einaga H, Mochiduki K, Teraoka Y (2013) Photocatalytic oxidation processes for toluene oxidation over TiO2 catalysts. Catalysts 3(1):219–231

    Article  CAS  Google Scholar 

  40. Dong C, Qu Z, Qin Y et al (2019) Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: involvement and replenishment of oxygen species using in situ designed-TP techniques. ACS Catal 9(8):6698–6710

    Article  CAS  Google Scholar 

  41. Wang Z, Xie S, Feng Y et al (2021) Simulated solar light driven photothermal catalytic purification of toluene over iron oxide supported single atom Pt catalyst. Appl Catal, B 298:120612

    Article  CAS  Google Scholar 

  42. Xu Y, Qu Z, Ren Y et al (2021) Enhancement of toluene oxidation performance over Cu–Mn composite oxides by regulating oxygen vacancy. Appl Surf Sci 560:149983

    Article  CAS  Google Scholar 

Download references

Funding

This research described above was supported by the National Key R & D Program of China (2022YFC3702800), the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (XDA23030300), the State Key Laboratory of Multiphase complex systems (MPCS-2021-A-01) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2018062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuangde Li or Yunfa Chen.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Li, S., Chen, S. et al. High Dispersed Pd, Pt Supported on La, Ce-Alumina for Excellent Low Temperature Toluene Oxidation: Effect of Calcination Temperature and Ascorbic Acid Reduction. Catal Lett 153, 3534–3545 (2023). https://doi.org/10.1007/s10562-022-04253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04253-3

Keywords

Navigation