Skip to main content
Log in

Zn@CS: An Efficient Cu-Free Catalyst System for Direct Azide-Alkyne Cycloadditions and Multicomponent Synthesis of 4-Aryl-NH-1,2,3-triazoles in H2O and DES

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A highly efficient recoverable and reusable heterogeneous Zn-catalyst, chitosan supported ZnSO4. 7H2O (designated as Zn@CS) is synthesized via a simple synthetic route. Low catalyst loading, need of aqueous reaction media and sharp reduction of time requirement in comparison to the previously reported methodologies are some special features of the established Zn catalyzed direct azide-alkyne cycloaddition reaction. Zn@CS-catalyst is also suitable for multicomponent synthesis of 4-aryl-NH-1,2,3-triazoles from different derivatives of benzaldehyde. An inexpensive and environmentally benign deep eutectic solvent (DES), ChCl:PEG-400:Glycerol as a suitable reaction media accelerates these reactions leading to excellent yields of NH-triazoles. Based on literature report a plausible mechanism has been suggested for ZnAAC reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Balaban AT, Oniciu DC, Katritzky AR (2004) Aromaticity as a cornerstone of heterocyclic chemistry. Chem Rev 104:2777

    Article  CAS  PubMed  Google Scholar 

  2. Fan WQ (1996) Katritzky AR. Comprehensive heterocyclic chemistry II. Elsevier Science, Oxford, p 1

    Google Scholar 

  3. Alvarez R, Velazquez S, San-Felix A, Aquaro S, De Clercq E, Perno CF, Karlsson A, Balzarini J, Camarasa MJ (1994) 1,2,3-Triazole-[2’,5’-bis-O-(tert-butyldimethylsilyl)-beta-D- ribofuranosyl]-3’-spiro-5"-(4"-amino-1",2"-oxathiole 2",2"-dioxide) (TSAO) analogues: synthesis and anti-HIV-1 activity. J Med Chem 3:4185

    Article  Google Scholar 

  4. Genin MJ, Allwine DA, Anderson DJ, Barbachyn MR, Emmert DE, Garmon SA, Graber DR, Grega KC, Hester JB, Hutchinson DK, Morris J, Reischer RJ, Ford CW, Zurenko GE, Hamel JC, Schaadt RD, Stapert D, Yagi BH (2000) Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. J Med Chem 43:953

    Article  CAS  PubMed  Google Scholar 

  5. Buckle DR, Rockell CJM (1982) Studies on v-triazoles. Part 4. The 4-methoxybenzyl group, a versatile N-protecting group for the synthesis of N-unsubstituted v-triazoles. J Chem Soc Perkin Trans 1:627

    Article  Google Scholar 

  6. Brockunier LL, Parme ER, Ok HO, Candelore MR, Cascieri MA, Colwell LF, Deng L, Feeney WP, Forrest MJ, Hom GJ, MacIntyre DE, Tota L, Wyvratt MJ, Fisher MH, Weber AE (2000) Human beta3-adrenergic receptor agonists containing 1,2,3-triazole-substituted benzenesulfonamides. Bioorg Med Chem Lett 10:2111

    Article  CAS  PubMed  Google Scholar 

  7. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004

    Article  CAS  Google Scholar 

  8. Huisgen R (1963) 1,3-dipolar cycloadditions past and future. Angew Chem Int Ed 2:565

    Article  Google Scholar 

  9. Huisgen R (1963) 1,3-dipolar cycloadditions past and future. Angew Chem Int Ed 2:633

    Article  Google Scholar 

  10. Zhang X, Hsung RP, Li HA (2007) A triazole-templated ring-closing metathesis for constructing novel fused and bridged triazoles. Chem Commun 23:2420–2422

    Article  Google Scholar 

  11. Gonda Z, Novak Z (2010) Highly active copper-catalysts for azide-alkynecycloaddition. Dalton Trans 39:726

    Article  CAS  PubMed  Google Scholar 

  12. Peddibhotla S, Dang Y, Liu JO, Romo D (2007) Simultaneous arming and structure/activity studies of natural products employing O-H insertions: an expedient and versatile strategy for natural products-based chemical genetics. J Am Chem Soc 129:1222

    Article  Google Scholar 

  13. Beckmann HSG, Wittmann V (2007) One-pot procedure for diazo transfer and azide- alkyne cycloaddition: triazole linkages from amines. Org Lett 9:1

    Article  CAS  PubMed  Google Scholar 

  14. Barral K, Moorhouse AD, Moses JE (2007) Efficient conversion of aromatic amines into azides: a one-pot synthesis of triazole linkages. Org Lett 9:1809

    Article  CAS  PubMed  Google Scholar 

  15. Hagiwara H, Sasaki H, Hoshi T, Suzuki T (2009) Sustainable click reaction catalyzed by supported ionic liquid catalyst (Cu-SILC). Synlett 4:643

    Article  Google Scholar 

  16. Chassaing S, Kumarraja M, Sani Souna Sido A, Pale P, Sommer J (2007) Click chemistry in CuI-Zeolites: the huisgen [3 + 2]-cycloaddition. Org Lett 9:883

    Article  CAS  PubMed  Google Scholar 

  17. Lipshutz BH, Taft BR (2006) Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew Chem 118:8415

    Article  Google Scholar 

  18. Jlalia I, Elamari HF, Meganem Herscovici J, Girard C (2008) Copper(I)-doped Wyoming’s montmorillonite for the synthesis of disubstituted 1,2,3-triazoles. Tetrahedron Lett 49:6756

    Article  CAS  Google Scholar 

  19. Urbani CN, Bell CA, Whittaker MR, Monteiro MJ (2008) Convergent synthesis of second generation AB-type miktoarm dendrimers using “Click” chemistry catalyzed by copper wire. Macromolecules 41:1057

    Article  CAS  Google Scholar 

  20. Duran Pachon L, Van Maarseveen JH, Rothenberg G (2005) Click chemistry: copper clusters catalyse the cycloaddition of azides with terminal alkynes. Adv Synth Catal 347:811

    Article  CAS  Google Scholar 

  21. Molteni G, Bianchi CL, Marinoni G, Santo N, Ponti A (2006) Cu/Cu-oxide nanoparticles as catalyst in the “click” azide–alkyne cycloaddition. New J Chem 30:1137

    Article  CAS  Google Scholar 

  22. Rostovtsev VV, Green L, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “Ligation” of azides and terminal alkynes. Angew Chem 41:2596

    Article  CAS  Google Scholar 

  23. McNulty J, Keskar K, Vemula R (2011) The first well-defined silver(I)-complex-catalyzed cycloaddition of azides onto terminal alkynes at room temperature. Chem Eur J 17:14727

    Article  CAS  PubMed  Google Scholar 

  24. Salam N, Sinha A, Roy AS, Mondal P, Jana NR, Islam SM (2014) Synthesis of silver–graphene nanocomposite and its catalytic application for the one-pot threecomponent coupling reaction and one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Adv 4:10001

    Article  CAS  Google Scholar 

  25. Ali AA, Chetia M, Saikia B, Saikia PJ, Sarma D (2015) AgN(CN)2/DIPEA/H2O-EG: a highly efficient catalytic system for synthesis of 1,4-disubstituted-1,2,3 triazoles at room temperature. Tetrahedron Lett 56:5892

    Article  CAS  Google Scholar 

  26. Sultana J, Khupse ND, Chakrabarti S, Chattopadhyay P, Sarma D (2019) Ag2CO3-catalyzed cycloaddition of organic azides onto terminal alkynes: a green and sustainable protocol accelerated by aqueous micelles of CPyCl. TetrahedronLett 60:1117

    Article  CAS  Google Scholar 

  27. Garg A, Khupse N, Bordoloi A, Sarma D (2019) Ag–NHC anchored on silica: an efficient ultra-low loading catalyst for regioselective 1,2,3-triazole synthesis. New J Chem 43:19331

    Article  CAS  Google Scholar 

  28. Arado OD, Monig H, Wagner H, Franke JH, Langewisch G, Held PA, Studer A, Fuchs H (2013) On-surface azide alkyne cycloaddition on Au(111). ACS Nano 7:8509

    Article  Google Scholar 

  29. Boominathan M, Pugazhenthiran N, Nagaraj M, Muthusubramanian S, Murugesan S, Bhuvanesh N (2013) Nanoporous titania-supported gold nanoparticle-catalyzed green synthesis of 1,2,3-triazoles in aqueous medium. ACS Sustain Chem Eng 1:1405

    Article  CAS  Google Scholar 

  30. Rao HSP, Chakibanda G (2014) Raney Ni catalyzed azide-alkyne cycloaddition reaction. RSC Adv 4:46040

    Article  Google Scholar 

  31. Meng X, Xu X, Gao T, Chen B (2010) Zn/C-catalyzed cycloaddition of azides and aryl alkynes. Eur J Org Chem 2010:5409–5414

    Article  Google Scholar 

  32. Smith CD, Greaney MF (2013) Zinc mediated azidealkyne ligation to 1,5- and 1,4,5-substituted 1,2,3-triazoles. Org Lett 18:4826

    Article  Google Scholar 

  33. Morozova MA, Yusubov MS, Kratochvil B, Eigner V, Bondarev AA, Yoshimura A, Saito A, Zhdankin VV, Trusova ME, Postnikov P (2017) Regioselective Zn(OAc)2-catalyzed azide–alkyne cycloaddition in water: the green click-chemistry. Org Chem Front 4:978

    Article  CAS  Google Scholar 

  34. Sadeghi B, Hassanabadi A, Kamali M (2012) ZnO nanoparticles: efficient and versatile reagents for synthesis of 1,4-disubstituted 1,2,3-triazoles. J Chem Res 36:9

    Article  CAS  Google Scholar 

  35. Zhu LL, Xu XQ, Shi JW, Chen BL, Chen Z (2016) N2-selective iodofunctionalization of olefins with NH-1,2,3-triazoles to provide N2-alkyl-substituted 1,2,3-triazoles. J Org Chem 81:3568

    Article  CAS  PubMed  Google Scholar 

  36. Jin T, Kamijo S, Yamamato Y (2004) Copper-catalyzed synthesis of N-unsubstituted 1,2,3-triazoles from nonactivated terminal alkynes. Eur J Org Chem 2004:3789

    Article  Google Scholar 

  37. Barluenga J, Valdés C, Beltrán G, Escribano M, Aznar F (2006) Developments in Pd catalysis: synthesis of 1H–1,2,3-triazoles from sodium azide and alkenyl bromides. Angew Chem Int Ed 45:6893

    Article  CAS  Google Scholar 

  38. Zhang H, Dong DZ, Wang ZL (2016) Direct synthesis of N-unsubstituted 4-aryl-1,2,3-triazoles mediated by amberlyst-15. Synthesis 48:131

    CAS  Google Scholar 

  39. Payra S, Saha A, Banerjee S (2018) On water Cu@g-C3N4 catalyzed synthesis of NH-1,2,3-triazoles via [2+3] cycloadditions of nitroolefins/alkynes and sodium azide. Chem Cat Chem 10:5468

    CAS  Google Scholar 

  40. Hu Q, Liu Y, Deng X, Li Y, Chen Y (2016) Aluminium(III) chloride-catalyzed three-component condensation of aromatic aldehydes, nitroalkanes and sodium azide for the synthesis of 4-Aryl-NH-1,2,3-triazoles. Adv Synth Catal 358:1689

    Article  CAS  Google Scholar 

  41. Hui R, Zhao M, Chen M, Ren Z, Guan Z (2017) One-pot synthesis of 4-Aryl-NH-1,2,3-triazoles through three-component reaction of aldehydes, nitroalkanes and NaN3. Chin J Chem 35:1808

    Article  CAS  Google Scholar 

  42. Daraie M, Heravi MM, Sarmasti N (2020) Synthesis of polymer-supported Zn(II) as a novel and green nanocatalyst for promoting click reactions and using design of experiment for optimization of reaction conditions. J Macromol Sci Part A: Pure Appl Chem 57:488

    Article  CAS  Google Scholar 

  43. Qiu Y, Qin Y, Ma Z, Xia W (2014) Chitosan-supported zinc nitrate: preparation and catalyst for condensation reaction of aldehydes, amines, and terminal alkynes leading to the formation of propargylamines. Chem Lett 43:1284

    Article  CAS  Google Scholar 

  44. Han XY, Ma YF, Lv MY, Wu ZP, Qian LC (2014) Chitosan-zinc chelate improves intestinal structure and mucosal function and decreases apoptosis in ileal mucosal epithelial cells in weaned pigs. British J Nutrition 111:1405

    Article  CAS  Google Scholar 

  45. Phukan P, Agarwal S, Deori K, Sarma D (2020) Zinc oxide nanoparticles catalysed one pot three component reaction: a facile synthesis of 4 aryl NH 1,2,3 triazoles. Catal Lett 150:2208

    Article  CAS  Google Scholar 

  46. Garg A, Sarma D, Ali AA (2020) Microwave assisted metal-free approach to access 1,2,3-triazoles through multicomponent synthesis. Curr Res Gr Sustain Chem 3:100013

    Article  Google Scholar 

  47. Mekahlia S, Bouzid B (2009) Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond- activity correlation study. Phys Procedia 2:1045

    Article  CAS  Google Scholar 

  48. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohyd Polym 55:77

    Article  CAS  Google Scholar 

  49. Wang X, Du Y, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohyd Polym 56:21

    Article  CAS  Google Scholar 

  50. Kumar S, Nigam N, Gosh T, Duta PK, Yadav RS, Pandey AC (2010) Preparation, characterization and optical properties of a chitosan-anthraldehyde crosslinkable film. J Applied Polym Sci 115:3056

    Article  CAS  Google Scholar 

  51. Adewuyi S, Bisiriyu IO, Akinremi CA (2015) Zinc (II) metal ion complexes of chitosan: towardheterogeneous-active catalysts for the polymerization of vinyl acetate. Ife J Sc 17:749

    Google Scholar 

  52. Durand E, Lecomte J, Villeneuve P (2013) Deep eutectic solvents: synthesis, application, and focus on lipase-catalyzed reactions. Eur J Lipid Sci Technol 115:379

    Article  CAS  Google Scholar 

  53. Khandelwal S, Tailor YK, Kumar M (2016) Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq 215:345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge DST, New Delhi, India for a research grant [No. EMR/2016/002345]. The financial assistance of the DST-FIST and UGC-SAP program to the Department of Chemistry, Dibrugarh University is also gratefully acknowledged. We are also thankful to Dibrugarh University for providing Dibrugarh University Research Fellowship (DURF). The authors acknowledge CSIC, Dibrugarh University for NMR measurements and Dibrugarh University for providing all infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta Sarma.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5734 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, J., Garg, A., Kulshrestha, A. et al. Zn@CS: An Efficient Cu-Free Catalyst System for Direct Azide-Alkyne Cycloadditions and Multicomponent Synthesis of 4-Aryl-NH-1,2,3-triazoles in H2O and DES. Catal Lett 153, 3516–3526 (2023). https://doi.org/10.1007/s10562-022-04248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04248-0

Keywords

Navigation