Skip to main content
Log in

Facile Fabrication of Hierarchical SAPO-34 in Bifunctional Catalyst for Direct Conversion of Syngas into Light Olefins

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Direct synthesis of light olefins from syngas (STO) using bifunctional catalyst composed of oxide and zeolite has attracted extensive attention in both academia and industry. In this study, we present a facile post-treatment approach to obtain hierarchical SAPO-34 by treating the crystallized product in mother liquor at low temperature. The physical and chemical properties of the resulting molecular sieves were characterized by XRD, SEM, TEM, N2 adsorption–desorption, XRF and NH3-TPD. The obtained hierarchical SAPO-34 were mixed with ZnCrAlOx oxide to prepare the bifunctional catalyst, and the catalytic performance for direct conversion of syngas to light olefins was examined. Compared with the bifunctional catalyst obtained from the SAPO-34 molecular sieves without post-treatment, the bifunctional catalyst with hierarchical SAPO-34 obtained by mother liquor post-treatment showed enhanced performance with higher selectivity of light olefins. Importantly, the bifunctional catalyst with hierarchical SAPO-34 has a good catalytic stability with no obvious deactivation over 100 h of testing. The enhanced catalytic performance of the bifunctional catalyst with hierarchical SAPO-34 could be attributed to the hierarchical structure of SAPO-34 that can increase the rate of mass transfer to avoid further hydrogenation and conversion of olefin products on the catalyst, thus could improve the selectivity of C2–C4 olefins.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Galvis HMT, De Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3:2130–2149

    Article  Google Scholar 

  2. Zhao Z, Jiang J, Wang F (2021) An economic analysis of twenty light olefin production pathways. J Energy Chem 56:193–202

    Article  CAS  Google Scholar 

  3. Meng FH, Li XJ, Zhang P et al (2021) A facile approach for fabricating highly active ZrCeZnO in combination with SAPO-34 for the conversion of syngas into light olefins. Appl Surf Sci 542:148713

    Article  CAS  Google Scholar 

  4. Ye M, Li H, Zhao Y et al (2015) MTO processes development: the key of mesoscale studies. Adv Chem Eng 47:279–335

    Article  CAS  Google Scholar 

  5. Chen Q, Lv M, Gu Y et al (2018) Hybrid energy system for a coal-based chemical industry. Joule 2:607–620

    Article  CAS  Google Scholar 

  6. Zhou W, Kang J, Cheng K et al (2018) Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether. Angew Chem Int Ed 57:12012–12016

    Article  CAS  Google Scholar 

  7. Sun J, Yang G, Peng X et al (2019) Beyond cars: fischer-tropsch synthesis for non-automotive applications. ChemCatChem 11:1412–1424

    Article  CAS  Google Scholar 

  8. Ni Y, Liu Y, Chen Z et al (2019) Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst. ACS Catal 9:1026–1032

    Article  CAS  Google Scholar 

  9. Zhou W, Cheng K, Kang J et al (2019) New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 48:3193–3228

    Article  CAS  PubMed  Google Scholar 

  10. Tian P, Wei YX, Ye M et al (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5:1922–1938

    Article  CAS  Google Scholar 

  11. Jiao F, Li JJ, Pan XL et al (2016) Selective conversion of syngas to light olefins. Science 351:1065–1068

    Article  CAS  PubMed  Google Scholar 

  12. Cheng K, Gu B, Liu XL et al (2016) Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew Chem Int Ed 55:4725–4728

    Article  CAS  Google Scholar 

  13. Zhu YF, Pan XL, Jiao F et al (2017) Role of manganese oxide in syngas conversion to light olefins. ACS Catal 7:2800–2804

    Article  CAS  Google Scholar 

  14. Li N, Jiao F, Pan XL et al (2019) Size effects of ZnO nanoparticles in bifunctional catalysts for selective syngas conversion. ACS Catal 9:960–966

    Article  CAS  Google Scholar 

  15. Su JJ, Wang D, Wang YD et al (2018) Direct conversion of syngas into light olefins over zirconium-doped indium (III) oxide and SAPO-34 bifunctional catalysts: design of oxide component and construction of reaction network. ChemCatChem 10:1536–1541

    Article  CAS  Google Scholar 

  16. Kirilin AV, Dewilde JF, Santos V et al (2017) Conversion of synthesis gas to light olefins: impact of hydrogenation activity of methanol synthesis catalyst on the hybrid process selectivity over Cr-Zn and Cu-Zn with SAPO-34. Ind Eng Chem Res 56:13392–13401

    Article  CAS  Google Scholar 

  17. Wang S, Wang PF, Shi DZ et al (2020) Direct conversion of syngas into light olefins with low CO2 emission. ACS Catal 10:2046–2059

    Article  CAS  Google Scholar 

  18. Liu XL, Wang MH, Yin HR et al (2020) Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal 10:8303–8314

    Article  CAS  Google Scholar 

  19. Tan L, Wang F, Zhang PP et al (2020) Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins. Chem Sci 11:4097–4105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu XL, Zhou W, Yang YD et al (2018) Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. Chem Sci 9:4708–4718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiao F, Pan XL, Gong K et al (2018) Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angew Chem Int Ed. 57:4692–4696

    Article  CAS  Google Scholar 

  22. Su JJ, Zhou HB, Liu S et al (2019) Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts. Nat Commun 10:1297

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang MH, Wan ZW, Liu SH et al (2021) Synthesis of hierarchical SAPO-34 to improve the catalytic performanceof bifunctional catalysts for syngas-to-olefins reactions. J Catal 394:181–192

    Article  CAS  Google Scholar 

  24. Tian P, Zhan GW, Tian J et al (2022) Direct CO2 hydrogenation to light olefins over ZnZrOx mixed with hierarchically hollow SAPO-34 with rice husk as green silicon source and template. Appl Catal B 315:121572

    Article  CAS  Google Scholar 

  25. Olsbye U, Svelle S, Bjørgen M et al (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed 51:5810–5831

    Article  CAS  Google Scholar 

  26. Xu ST, Zhi YC, Han JF et al (2017) Advances in catalysis for methanol-to-olefins conversion. Adv Catal 61:37–122

    CAS  Google Scholar 

  27. Izadbakhsh A, Farhadi F, Khorasheh F et al (2009) Key parameters in hydrothermal synthesis and characterization of low silicon content SAPO-34 molecular sieve. Micropor Mesopor Mater 126:1–7

    Article  CAS  Google Scholar 

  28. Wang PF, Lv A, Hu J et al (2012) The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction. Micropor Mesopor Mater 152:178–184

    Article  CAS  Google Scholar 

  29. Zhong JW, Han JF, Wei YX et al (2017) Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications, Catal. Sci Technol 7:4905–4923

    CAS  Google Scholar 

  30. Sun QM, Xie ZK, Yu JH (2018) The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Natl Sci Rev 5:542–558

    Article  CAS  Google Scholar 

  31. Sun QM, Wang N, Guo GQ et al (2015) Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance. J Mater Chem A 3:19783–19789

    Article  CAS  Google Scholar 

  32. Liu GY, Tian P, Xia QH et al (2012) An effective route to improve the catalytic performance of SAPO-34 in the methanol-to-olefin reaction. J Nat Gas Chem 21:431–434

    Article  CAS  Google Scholar 

  33. Liu X, Ren S, Zeng GF et al (2016) Coke suppression in MTO over hierarchical SAPO-34 zeolites. RSC Adv 34:6

    Google Scholar 

  34. Dang SS, Li SG, Yang CG et al (2019) Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrOx/SAPO-34 bifunctional catalysts. Chemsuschem 12:3582–3591

    Article  CAS  PubMed  Google Scholar 

  35. Shu R, Liu GJ, Wu X et al (2017) Enhanced MTO performance over acid treated hierarchical SAPO-34, Chinese. J Catal 38:123–130

    Google Scholar 

  36. Xu L, Du AP (2008) Wei YX et al u, Synthesis of SAPO-34 with only Si(4Al) species: effect of Si contents on Si incorporation mechanism and Si coordination environment of SAPO-34. Micropor Mesopor Mater 115:332–337

    Article  CAS  Google Scholar 

  37. Xing AH, Yuan DL, Tian DY et al (2019) Controlling acidity and external surface morphology of SAPO-34 and its improved performance for methanol to olefins reaction. Micropor Mesopor Mater 288:109562

    Article  CAS  Google Scholar 

  38. Li YX, Huang YH, Guo JH et al (2014) Hierarchical SAPO-34/18 zeolite with low acid site density for converting methanol to olefins. Catal Today 233:2–7

    Article  CAS  Google Scholar 

  39. Pan YY, Chen GR, Yang GJ et al (2019) Efficient post-synthesis of hierarchical SAPO-34 zeolites via organic amine etching under hydrothermal conditions and their enhanced MTO performance. Inorg Chem Front 6:1299–1303

    Article  CAS  Google Scholar 

  40. Dang SS, Li SG, Yang CG et al (2019) Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrOx/SAPO-34 bifunctional catalysts. Chemsuschem 12:1–11

    Article  Google Scholar 

  41. Wang C, Yang M, Tian P et al (2015) Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J Mater Chem A 3:5608–5616

    Article  CAS  Google Scholar 

  42. Han L, Guo LL, Xue SZ et al (2021) Polyacrylamide-assisted synthesis of hierarchical porous SAPO-34 zeolites with excellent MTO catalytic performance. Micropor Mesopor Mater 311:110676

    Article  CAS  Google Scholar 

  43. Dagle VML, Dagle RA, Li JJ et al (2014) Direct conversion of syngas-to-hydrocarbons over higher alcohols synthesis catalysts mixed with HZSM-5. Ind Eng Chem Res 53:13928–13934

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Liaoning Province (20180550316). The authors gratefully acknowledge Dr. Qixiu Li for revising the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaona Wei, Wenshuang Li or Chuang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 350 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Yuan, L., Li, W. et al. Facile Fabrication of Hierarchical SAPO-34 in Bifunctional Catalyst for Direct Conversion of Syngas into Light Olefins. Catal Lett 153, 3433–3441 (2023). https://doi.org/10.1007/s10562-022-04245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04245-3

Keywords

Navigation