Skip to main content

Advertisement

Log in

Ni@Pd Core–Shell Nanoparticles with Tunable Comosition Supported on Glycine-Functionalized Hollow Fe3O4@PPy for Tandem Degradation Reduction of 4-Nitrophenol and Toxic Organic Dyes by Hydrogen Generation via Hydrolysis of NaBH4 and NH3BH3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We here report the synthesis, characterization, and catalytic performance of new supported Pd(0) catalysts. The catalysts were characterized by SEM, TEM, XRD, FT-IR, VSM, XPS, TG and AAS. The results showed that the catalyst exhibited good catalytic activity in the reaction of degradation of 4-NP and organic dyes MO and MB in water with NaBH4 and amino borane (AB) as the hydrogen sources. At the same time, the catalyst has good recoverability and is easily recovered and recycled from the reaction mixture by applying an external magnet and reusing it in five cycles without significant loss in activity.

Graphical Abstract

In the present work, our deliberately designed experiments demonstrate that Ni@Pd immobilized on the surface of hollow Fe3O4@PPy-Gly (HFPG) under mild condition. It exhibits high activity for the reduction of 4-NP and organic dyes by NaBH4 and AB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 2
Fig. 16

Similar content being viewed by others

References

  1. Mou F, Guan J, Ma H, Xu L, Shi W (2012) Appl Mater Interfaces 4:3987–3993

    Article  CAS  Google Scholar 

  2. Zhang YR, Shen SL, Wang SQ, Huang J, Su P, Wang QR, Zhao BX (2014) Chem Eng J 239:250–256

    Article  CAS  Google Scholar 

  3. Zhang H, Chen D, Lu X, Wang Y, Chang H, Li J (2010) Environ Sci Technol 44:1107–1111

    Article  CAS  PubMed  Google Scholar 

  4. Ma Y, Wu X, Zhang G (2017) Appl Catal B:Environ 205:262–270

    Article  CAS  Google Scholar 

  5. Hai FI, Yamamoto K, Fukushi K (2007) Crit Rev Environ Sci Technol 37:315–377

    Article  CAS  Google Scholar 

  6. Martinez-Huitle CA, Brillas E (2009) Appl Catal B:Environ 89:105–145

    Article  Google Scholar 

  7. Yang Y, Zhang Y, Sun CJ, Li X, Zhang W, Ma X, Ren Y, Zhang X (2014) ChemCatChem 6:3084–3090

    Article  CAS  Google Scholar 

  8. Zhang S, Gai S, He F, Dai Y, Gao P, Li L, Chen Y, Yang P (2014) Nanoscale 6:7025–7032

    Article  CAS  PubMed  Google Scholar 

  9. Dong ZP, Le X, Li X, Zhang W, Dong C, Ma JT (2014) Appl Catal B: Environ 158–159:129–135

    Article  Google Scholar 

  10. Dong ZP, Yu GQ, Le X (2015) New J Chem 39:8623–8629

    Article  CAS  Google Scholar 

  11. Luo SC, Long Y, Liang K, Qin JH, Qiao Y, Li J, Yang GX, Ma JT (2021) Green Chem 23:8545–8553

    Article  CAS  Google Scholar 

  12. Niu Z, Zhang S, Sun Y, Gai S, He F, Dai Y, Li L, Yang P (2014) Dalton Trans 43:16911–16918

    Article  CAS  PubMed  Google Scholar 

  13. Shukla A, Singha RK, Sasaki T, Bal R (2015) Green Chem 17:785–790

    Article  CAS  Google Scholar 

  14. Das R, Sypu VS, Paumo HK, Bhaumik M, Maharaj V, Maity A (2019) Appl Catal B: Environ 244:546–558

    Article  CAS  Google Scholar 

  15. Zhou JJ, Hou WX, Liu X, Astruc D (2022) Inorg Chem Front 9:1416–1422

    Article  CAS  Google Scholar 

  16. Wang YY, Shu Y, Xu J, Pang H (2017) CrstEngComn 19:684–689

    Article  Google Scholar 

  17. Liao GF, Chen J, Zeng WG, Yu CH, Yi CF, Xu ZS (2016) J Phys Chem C 120:25935–25944

    Article  CAS  Google Scholar 

  18. Gregor L, Reilly AK, Dickstein TA, Mazar S, Bram S, Morgan DG et al (2018) ACS Omega 3:14717–14725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hamilton CW, Baker RT, Staubitz A, Manners I (2009) Chem Soc Rev 38:279–293

    Article  CAS  PubMed  Google Scholar 

  20. Staubitz A, Robertson APM, Manners I (2010) Chem Rev 110:4079–4124

    Article  CAS  PubMed  Google Scholar 

  21. Zhang WW, Zhu QL, Xu Q (2016) ACS Catal 6:6892–6906

    Article  Google Scholar 

  22. Yuksel AC, Gulaby SK, Ozgur CC (2020) Int J Hydrogen Energy 45:3414–3434

    Article  Google Scholar 

  23. Liu X, Zhang XY, Li DS, Zhang SQ, Zhang QH (2021) J Mater Chem A 9:18164–18174

    Article  CAS  Google Scholar 

  24. Zhang Q, Xu FH, Huang WK, Wang YL, Liu X (2022) Fuel 324:124695

    Article  CAS  Google Scholar 

  25. Wang ZZ, Zhang HY, Chen LL, Miao SS, Wu SJ, Hao XF, Zhang WX, Jia MJ (2018) J Phys Chem C 122:12975–12983

    Article  CAS  Google Scholar 

  26. Bian SW, Liu S, Guo MX, Xu LL, Chang L (2015) RSC Adv 5:11913–11916

    Article  CAS  Google Scholar 

  27. Wang CX, Yang F, Yang W, Ren L, Zhang YH, Jia XL, Zhang Q, Li YF (2015) RSC Adv 5:27526–27532

    Article  CAS  Google Scholar 

  28. Paul S, Clark JH (2003) Green Chem 5:635–638

    Article  CAS  Google Scholar 

  29. Chen Z, Cui ZM, Niu F, Jiang L, Song WG (2010) Chem Commun 46:6524–6526

    Article  CAS  Google Scholar 

  30. Niu JR, Wang FS, Zhu XH, Zhao JH, Ma JT (2014) RSC Adv 4:37761–37766

    Article  CAS  Google Scholar 

  31. Danhan A, Portnoy M (2007) J Am Chem Soc 129:5860–5869

    Article  Google Scholar 

  32. Le X, Dong ZP, Liu YS, Jin ZC, Huy TD, Le M, Ma JT (2014) J Mater Chem A 2:19696–19706

    Article  CAS  Google Scholar 

  33. Liu YS, Zhang W, Li XL, Le X, Ma JT (2015) New J Chem 39:6474–6481

    Article  CAS  Google Scholar 

  34. Liu S, Guo MX, Shao F, Peng YH, Biao SW (2016) RSC Adv 6:76128–76131

    Article  CAS  Google Scholar 

  35. Zhao ZM, Long Y, Luo S, Wu W, Ma JT (2019) New J Chem 43:6294–6302

    Article  CAS  Google Scholar 

  36. Long Y, Zhao ZM, Wu L, Luo S, Wen H, Wu W, Zhang HB, Ma JT (2017) Mol Catal 433:291–300

    Article  CAS  Google Scholar 

  37. Wan TR, Wang GP, Guo YP, Fan XY, Zhao YP, Zhang X, Qin JH, Fang J, Ma JT (2022) Long Y 414:246–256

    Google Scholar 

  38. Wang P, Zhu XH, Liu MM, Niu JR, Yuan B, Li R, Ma JT (2014) RSC Adv 4:28922–28927

    Article  CAS  Google Scholar 

  39. Lou XW, Archer LA, Yang ZC (2012) Adv Mater 20:3987–4019

    Article  Google Scholar 

  40. Long Y, Zhang HB, Gao Z, Qin JH, Pan YT, Zhao JP, Luo YT, Ma ZP, Ma XYC, JT, (2019) Inorg. Chem Front 6:829–836

    CAS  Google Scholar 

  41. Niu JR, Xie M, Zhu XH, Long Y, Wang P, Li R, Ma JT (2014) New J Chem 392:247–252

    CAS  Google Scholar 

  42. Baruah B, Gabriel GJ, Akbashev MJ, Booher ME (2013) Langmuir 29:4225–4234

    Article  CAS  PubMed  Google Scholar 

  43. Gu S, Wunder S, Lu Y, Mallauff M, Fenger R, Rademann K, Jaquet B, Zaccone A (2014) J Phys Chem C 118:18618–18625

    Article  CAS  Google Scholar 

  44. Kong XK, Chen QW, Lun ZY (2014) J Mater Chem A 2:610–613

    Article  CAS  Google Scholar 

  45. Yang XY, Li Y, Zhang P, Zhou RM, Peng HL, Liu D, Gui JZ (2018) ACS Appl Mater Interfaces 10:23154–23162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 11247 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, P., Hong, X. et al. Ni@Pd Core–Shell Nanoparticles with Tunable Comosition Supported on Glycine-Functionalized Hollow Fe3O4@PPy for Tandem Degradation Reduction of 4-Nitrophenol and Toxic Organic Dyes by Hydrogen Generation via Hydrolysis of NaBH4 and NH3BH3. Catal Lett 153, 3591–3604 (2023). https://doi.org/10.1007/s10562-022-04242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04242-6

Keywords

Navigation