Skip to main content
Log in

Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Subject to the shortcomings of traditional heterogeneous materials (such as the limited controllability of the preparation process, the complex surface structures and the dynamic evolution of surface structures), many scholars have been inspired by natural enzyme systems (e.g. monooxygenases and peroxidases) to innovate the catalytic system for C–H bond activation. The structure and catalytic performance of the high-valent Fe–O intermediates in metalloenzymes have been well studied for this purpose. This review will firstly introduce the natural Fe-based metalloenzymes and synthetic Fe complexes, and briefly summarize their structures and catalytic mechanisms, especially for C–H bond activation. Then, the structural characteristics and research progress of four representative Fe-based enzyme-mimetic materials were reviewed. These Fe-based metalloenzymes with unique coordination environment active sites and their powerful catalytic ability will provide a good reference for the field of heterogeneous catalysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Franke R, Selent D, Borner A (2012) Chem Rev 112:5675–5732

    Article  CAS  PubMed  Google Scholar 

  2. Guo P, Liu HY, Zhao J (2022) Nano Res 15:7840–7860

    Article  CAS  Google Scholar 

  3. Stephens HN (1926) J Am Chem Soc 48:2920–2922

    Article  CAS  Google Scholar 

  4. Sheldon RA, Downing RS (1999) Appl Catal A 189:163–183

    Article  CAS  Google Scholar 

  5. Zhang N, Ye C, Yan H, Li L, He H, Wang D, Li Y (2020) Nano Res 13:3165–3182

    Article  CAS  Google Scholar 

  6. Liao P, Getman RB, Snurr RQ (2017) ACS Appl Mater Interfaces 9:33484–33492

    Article  CAS  PubMed  Google Scholar 

  7. Olivos-Suarez AI, Szécsényi À, Hensen EJM, Ruiz-Martinez J, Pidko EA, Gascon J (2016) ACS Catal 6:2965–2981

    Article  CAS  Google Scholar 

  8. Chen L, Tang J, Song L-N, Chen P, He J, Au C-T, Yin S-F (2019) Appl Catal B 242:379–388

    Article  CAS  Google Scholar 

  9. Zhou S, Yang F, Bangbang W, Su H, Lu K, Ding Y, Lei K, Xu M, Shao B, Wang Y, Kong Y (2018) Catalysts 8:80

    Article  Google Scholar 

  10. Schwach P, Pan X, Bao X (2017) Chem Rev 117:8497–8520

    Article  CAS  PubMed  Google Scholar 

  11. Roudesly F, Oble J, Poli G (2017) J Mol Catal A 426:275–296

    Article  CAS  Google Scholar 

  12. Shaik S, de Visser SP, Kumar D (2004) J Am Chem Soc 126:11746–11749

    Article  CAS  PubMed  Google Scholar 

  13. Yan H, Zhao M, Feng X, Zhao S, Zhou X, Li S, Zha M, Meng F, Chen X, Liu Y, Chen D, Yan N, Yang C (2022) Angew Chem Int Ed 61:e202116059

    Article  CAS  Google Scholar 

  14. Bai Z-J, Mao Y, Wang B-H, Chen L, Tian S, Hu B, Li Y-J, Au C-T, Yin S-F (2022) Nano Res 12:1–9

    Google Scholar 

  15. Qi G, Davies TE, Nasrallah A, Sainna MA, Howe AGR, Lewis RJ, Quesne M, Catlow CRA, Willock DJ, He Q, Bethell D, Howard MJ, Murrer BA, Harrison B, Kiely CJ, Zhao X, Deng F, Xu J, Hutchings GJ (2022) Nat Catal 5:45–54

    Article  CAS  Google Scholar 

  16. Zhang M, Wang Y-G, Chen W, Dong J, Zheng L, Luo J, Wan J, Tian S, Cheong W-C, Wang D, Li Y (2017) J Am Chem Soc 139:10976–10979

    Article  CAS  PubMed  Google Scholar 

  17. Tinberg CE, Lippard SJ (2011) Acc Chem Res 44:280–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baik M-H, Newcomb M, Friesner RA, Lippard SJ (2003) Chem Rev 103:2385–2420

    Article  CAS  PubMed  Google Scholar 

  19. Poulos TL (2014) Chem Rev 114:3919–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI (2018) Chem Rev 118:2718–2768

    Article  CAS  PubMed  Google Scholar 

  21. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–350

    Article  CAS  PubMed  Google Scholar 

  22. Battistella B, Ray K (2020) Coord Chem Rev 408:213176

    Article  CAS  Google Scholar 

  23. Bour JR, Wright AM, He X, Dincă M (2020) Chem Sci 11:1728–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hua J, Fei Y-H, Feng C, Liu C, Liang S, Wang S-L, Wu F (2022) J Hazardous Mater 421:126806

    Article  CAS  Google Scholar 

  25. Zhang H, Liu G, Shi L, Ye J (2018) Adv Energy Mater 8:1701343

    Article  Google Scholar 

  26. Rivallan M, Bromley B, Kiwi-Minsker L (2010) Catal Today 157:223–230

    Article  CAS  Google Scholar 

  27. Li A, Nicolae SA, Qiao M, Preuss K, Szilágyi PA, Moores A, Titirici M-M (2019) ChemCatChem 11:3602–3625

    Article  CAS  Google Scholar 

  28. Nath I, Chakraborty J, Verpoort F (2016) Chem Soc Rev 45:4127–4170

    Article  CAS  PubMed  Google Scholar 

  29. Liu M, Wu J, Hou H (2019) Chemistry 25:2935–2948

    Article  CAS  PubMed  Google Scholar 

  30. Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G (2007) Phys Chem Chem Phys 9:3483–3499

    Article  CAS  PubMed  Google Scholar 

  31. Noh H, Cho J (2019) Coord Chem Rev 382:126–144

    Article  CAS  Google Scholar 

  32. Krest CM, Onderko EL, Yosca TH, Calixto JC, Karp RF, Livada J, Rittle J, Green MT (2013) J Biol Chem 288:17074–17081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krest CM, Silakov A, Rittle J, Yosca TH, Onderko EL, Calixto JC, Green MT (2015) Nat Chem 7:696–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rittle J, Green MT (2010) Science 330:933–937

    Article  CAS  PubMed  Google Scholar 

  35. Huang X, Groves JT (2018) Chem Rev 118:2491–2553

    Article  CAS  PubMed  Google Scholar 

  36. de OrtizMontellano PR (2010) Chem Rev 110:932–948

    Article  Google Scholar 

  37. Shaik S, Lai W, Chen H, Wang Y (2010) Acc Chem Res 43:1154–1165

    Article  CAS  PubMed  Google Scholar 

  38. Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI (2017) Chem Rev 117:8574–8621

    Article  CAS  PubMed  Google Scholar 

  39. Kopp DA, Lippard SJ (2002) Curr Opin Chem Biol 6:568–576

    Article  CAS  PubMed  Google Scholar 

  40. Shu L, Nesheim JC, Kauffmann K, Münck E, Lipscomb JD, Que L (1997) Science 275:515–518

    Article  CAS  PubMed  Google Scholar 

  41. Ansari M, Senthilnathan D, Rajaraman G (2020) Chem Sci 11:10669–10687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moody PCE, Raven EL (2018) Acc Chem Res 51:427–435

    Article  CAS  PubMed  Google Scholar 

  43. Groves JT, Haushalter RC, Nakamura M, Nemo TE, Evans BJ (1981) J Am Chem Soc 103:2884–2886

    Article  CAS  Google Scholar 

  44. Jung LY, Mee GY, So-Yeop H, Cheal K, Wonwoo N (1998) Chem Lett 27:837–838

    Article  Google Scholar 

  45. Fujii H, Yoshimura T, Kamada H (1997) Inorg Chem 36:6142–6143

    Article  CAS  Google Scholar 

  46. Wołowiec S, Latos-Grażyński L (1998) Inorg Chem 37:2984–2988

    Article  Google Scholar 

  47. Sugimoto H, Tung HC, Sawyer DT (1988) J Am Chem Soc 110:2465–2470

    Article  CAS  Google Scholar 

  48. Boso B, Lang G, McMurry TJ, Groves JT (1983) J Chem Phys 79:1122–1126

    Article  CAS  Google Scholar 

  49. Penner-Hahn JE, Smith Eble K, McMurry TJ, Renner M, Balch AL, Groves JT, Dawson JH, Hodgson KO (1986) J Am Chem Soc 108:7819–7825

    Article  CAS  PubMed  Google Scholar 

  50. Fujii H (2002) Coord Chem Rev 226:51–60

    Article  CAS  Google Scholar 

  51. Park H, Lee D (2020) Chemistry 26:5916–5926

    Article  CAS  PubMed  Google Scholar 

  52. Ikbal SA, Colomban C, Zhang D, Delecluse M, Brotin T, Dufaud V, Dutasta J-P, Sorokin AB, Martinez A (2019) Inorg Chem 58:7220–7228

    Article  CAS  PubMed  Google Scholar 

  53. Zima AM, Lyakin OY, Bryliakov KP, Talsi EP (2018) Catal Commun 108:77–81

    Article  CAS  Google Scholar 

  54. Ansari M, Vyas N, Ansari A, Rajaraman G (2015) Dalton Trans 44:15232–15243

    Article  CAS  PubMed  Google Scholar 

  55. Postils V, Company A, Solà M, Costas M, Luis JM (2015) Inorg Chem 54:8223–8236

    Article  CAS  PubMed  Google Scholar 

  56. Ansari A, Rajaraman G (2014) Phys Chem Chem Phys 16:14601–14613

    Article  CAS  PubMed  Google Scholar 

  57. Bugnola M, Carmieli R, Neumann R (2018) ACS Catal 8:3232–3236

    Article  CAS  Google Scholar 

  58. Bugnola M, Shen K, Haviv E, Neumann R (2020) ACS Catal 10:4227–4237

    Article  CAS  Google Scholar 

  59. Gubelmann M, Popa JM, Tirel PJ. Preparation of phenols by hydroxylation of benzene derivatives by nitrous oxide over modified zeolite catalysts. Rhone-Poulenc Chimie SA, Fr. . 1991:9 pp.

  60. Panov GI, Sheveleva GA, Kharitonov AS, Romannikov VN, Vostrikova LA (1992) Appl Catal A 82:31–36

    Article  CAS  Google Scholar 

  61. Suzuki E, Nakashiro K, Ono Y (1988) Chem Lett 17(6):953–956

    Article  Google Scholar 

  62. Panov GI, Sobolev VI, Kharitonov AS (1990) J Mol Catal 61:85–97

    Article  CAS  Google Scholar 

  63. Uriarte AK (2000). In: Corma A, Melo FV, Mendioroz S, Fierro JLG (eds) Studies in Surface Science and Catalysis. Elsevier, Amsterdam

    Google Scholar 

  64. Uriarte AK, Rodkin MA, Gross MJ, Kharitonov AS, Panov GI (1997) Stud Surf Sci Catal 110:857–864

    Article  CAS  Google Scholar 

  65. Notte PP (2000) Top Catal 13:387–394

    Article  CAS  Google Scholar 

  66. Berlier G, Bonino F, Zecchina A, Bordiga S, Lamberti C (2003) ChemPhysChem 4:1073–1078

    Article  CAS  PubMed  Google Scholar 

  67. Kubánek P, Wichterlová B, Sobalı xkZ (2002) J Catal 211:109–118

    Google Scholar 

  68. Sobolev VI, Kharitonov AS, Paukshtis YA, Panov GI (1993) J Mol Catal 84:117–124

    Article  CAS  Google Scholar 

  69. Pérez-Ramírez J, Mul G, Kapteijn F, Moulijn JA, Overweg AR, Doménech A, Ribera A, Arends IWCE (2002) J Catal 207:113–126

    Article  Google Scholar 

  70. Joyner R, Stockenhuber M (1999) J Phys Chem B 103:5963–5976

    Article  CAS  Google Scholar 

  71. Lobree LJ, Hwang I-C, Reimer JA, Bell AT (1999) J Catal 186:242–253

    Article  CAS  Google Scholar 

  72. Marturano P, Drozdová L, Kogelbauer A, Prins R (2000) J Catal 192:236–247

    Article  CAS  Google Scholar 

  73. Lázár K, Kotasthane AN, Fejes P (1999) Catal Lett 57:171–177

    Article  Google Scholar 

  74. Lázár K, Pozdnyakova O, Wootsch A, Fejes P (2006) Hyperfine Interact 167:779–784

    Article  Google Scholar 

  75. Dubkov KA, Ovanesyan NS, Shteinman AA, Starokon EV, Panov GI (2002) J Catal 207:341–352

    Article  CAS  Google Scholar 

  76. Choi SH, Wood BR, Ryder JA, Bell AT (2003) J Phys Chem B 107:11843–11851

    Article  CAS  Google Scholar 

  77. Mul G, Pérez-Ramírez J, Kapteijn F, Moulijn JA (2002) Catal Lett 80:129–138

    Article  CAS  Google Scholar 

  78. Hensen EJM, Zhu Q, van Santen RA (2003) J Catal 220:260–264

    Article  CAS  Google Scholar 

  79. Yang G, Zhou D, Liu X, Han X, Bao X (2006) J Mol Struct 797:131–139

    Article  CAS  Google Scholar 

  80. Fejes P, Nagy JB, Lázár K, Halász J (2000) Appl Catal A 190:117–135

    Article  CAS  Google Scholar 

  81. Kucherov AV, Shelef M (2000) J Catal 195:106–112

    Article  CAS  Google Scholar 

  82. Marturano P, Drozdová L, Pirngruber GD, Kogelbauer A, Prins R (2001) Phys Chem Chem Phys 3:5585–5595

    Article  CAS  Google Scholar 

  83. Volodin AM, Dubkov KA, Lund A (2001) Chem Phys Lett 333:41–44

    Article  CAS  Google Scholar 

  84. Starokon EV, Dubkov KA, Pirutko LV, Panov GI (2003) Top Catal 23:137–143

    Article  CAS  Google Scholar 

  85. Snyder BER, Bols ML, Rhoda HM, Vanelderen P, Böttger LH, Braun A, Yan JJ, Hadt RG, Babicz JT, Hu MY, Zhao J, Alp EE, Hedman B, Hodgson KO, Schoonheydt RA, Sels BF, Solomon EI (2018) Proc Natl Acad Sci 115:12124–12129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Panov GI, Dubkov KA, Starokon EV (2006) Catal Today 117:148–155

    Article  CAS  Google Scholar 

  87. Dubkov KA, Sobolev VI, Talsi EP, Rodkin MA, Watkins NH, Shteinman AA, Panov GI (1997) J Mol Catal A: Chem 123:155–161

    Article  CAS  Google Scholar 

  88. Kachurovskaya NA, Zhidomirov GM, Hensen EJM, van Santen RA (2003) Catal Lett 86:25–31

    Article  CAS  Google Scholar 

  89. Ryder JA, Chakraborty AK, Bell AT (2003) J Catal 220:84–91

    Article  CAS  Google Scholar 

  90. Yoshizawa K, Shiota Y, Yumura T, Yamabe T (2000) J Phys Chem B 104:734–740

    Article  CAS  Google Scholar 

  91. Yoshizawa K, Shiota Y, Yamabe T (1999) J Am Chem Soc 121:147–153

    Article  CAS  Google Scholar 

  92. Jia J, Sun Q, Wen B, Chen LX, Sachtler WMH (2002) Catal Lett 82:7–11

    Article  CAS  Google Scholar 

  93. Miranda U, Varandas AJC, Kaplan IG (2014) Chem Phys Lett 595–596:175–179

    Article  Google Scholar 

  94. Rosa A, Ricciardi G, Baerends EJ (2010) Inorg Chem 49:3866–3880

    Article  CAS  PubMed  Google Scholar 

  95. Yakovlev AL, Zhidomirov GM, van Santen RA (2001) J Phys Chem B 105:12297–12302

    Article  CAS  Google Scholar 

  96. Bulánek R, Wichterlová B, Novoveská K, Kreibich V (2004) Appl Catal A 264:13–22

    Article  Google Scholar 

  97. Michalkiewicz B (2004) Appl Catal A 277:147–153

    Article  CAS  Google Scholar 

  98. Xia H, Sun K, Sun K, Feng Z, Li WX, Li C (2008) The Journal of Physical Chemistry C 112:9001–9005

    Article  CAS  Google Scholar 

  99. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394–1395

    Article  CAS  PubMed  Google Scholar 

  100. Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) Proc Natl Acad Sci 106:18908–18913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ (2012) Angew Chem Int Ed Engl 51:5129–5133

    Article  CAS  PubMed  Google Scholar 

  102. Hammond C, Dimitratos N, Lopez-Sanchez JA, Jenkins RL, Whiting G, Kondrat SA, Ab Rahim MH, Forde MM, Thetford A, Hagen H, Stangland EE, Moulijn JM, Taylor SH, Willock DJ, Hutchings GJ (2013) ACS Catal 3:1835–1844

    Article  CAS  Google Scholar 

  103. Forde MM, Armstrong RD, Hammond C, He Q, Jenkins RL, Kondrat SA, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Willock D, Kiely CJ, Hutchings GJ (2013) J Am Chem Soc 135:11087–11099

    Article  CAS  PubMed  Google Scholar 

  104. Panov G (2000) CATTECH 4:18–31

    Article  CAS  Google Scholar 

  105. Centi G, Genovese C, Giordano G, Katovic A, Perathoner S (2004) Catal Today 91:17–26

    Article  Google Scholar 

  106. Snyder BER, Vanelderen P, Bols ML, Hallaert SD, Böttger LH, Ungur L, Pierloot K, Schoonheydt RA, Sels BF, Solomon EI (2016) Nature 536:317–321

    Article  CAS  PubMed  Google Scholar 

  107. Snyder BER, Böttger LH, Bols ML, Yan JJ, Rhoda HM, Jacobs AB, Hu MY, Zhao J, Alp EE, Hedman B, Hodgson KO, Schoonheydt RA, Sels BF, Solomon EI (2018) Proc Natl Acad Sci 115:4565–4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bols ML, Snyder BE, Rhoda HM, Cnudde P, Fayad G, Schoonheydt RA, Van Speybroeck V, Solomon EI, Sels BF (2021) Nat Catal 4:332–340

    Article  CAS  Google Scholar 

  109. Snyder Benjamin ER, Bols Max L, Rhoda Hannah M, Plessers D, Schoonheydt Robert A, Sels Bert F, Solomon Edward I (2021) Science 373:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu B, Lin T, Lu Z, Yu X, Huang M, Yang R, Wang C, Tian C, Li J, Sun Y, Zhong L (2022). Chem. https://doi.org/10.1016/j.chempr.2022.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhou HCJ, Kitagawa S (2014) Chem Soc Rev 43:5415–5418

    Article  CAS  PubMed  Google Scholar 

  112. Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AG, Wood PA, Ward SC, Fairen-Jimenez D (2017) Chem Mater 29:2618–2625

    Article  CAS  Google Scholar 

  113. Ding C-W, Luo W, Zhou J-Y, Ma X-J, Chen G-H, Zhou X-P, Li D (2019) ACS Appl Mater Interfaces 11:45621–45628

    Article  CAS  PubMed  Google Scholar 

  114. Barona M, Ahn S, Morris W, Hoover W, Notestein JM, Farha OK, Snurr RQ (2020) ACS Catal 10:1460–1469

    Article  CAS  Google Scholar 

  115. Osadchii DY, Olivos-Suarez AI, Szécsényi Á, Li G, Nasalevich MA, Dugulan IA, Crespo PS, Hensen EJM, Veber SL, Fedin MV, Sankar G, Pidko EA, Gascon J (2018) ACS Catal 8:5542–5548

    Article  CAS  Google Scholar 

  116. Vitillo JG, Bhan A, Cramer CJ, Lu CC, Gagliardi L (2019) ACS Catal 9:2870–2879

    Article  CAS  Google Scholar 

  117. Wang D, Wang M, Li Z (2015) ACS Catal 5:6852–6857

    Article  CAS  Google Scholar 

  118. Szécsényi Á, Li G, Gascon J, Pidko EA (2018) Chem Sci 9:6765–6773

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ketrat S, Maihom T, Wannakao S, Probst M, Nokbin S, Limtrakul J (2017) Inorg Chem 56:14005–14012

    Article  CAS  PubMed  Google Scholar 

  120. Suh BL, Kim J (2018) J Phys Chem C 122:23078–23083

    Article  CAS  Google Scholar 

  121. Simons MC, Vitillo JG, Babucci M, Hoffman AS, Boubnov A, Beauvais ML, Chen Z, Cramer CJ, Chapman KW, Bare SR, Gates BC, Lu CC, Gagliardi L, Bhan A (2019) J Am Chem Soc 141:18142–18151

    Article  CAS  PubMed  Google Scholar 

  122. Yang H, Li J, Zhang H, Lv Y, Gao S (2014) Microporous Mesoporous Mater 195:87–91

    Article  CAS  Google Scholar 

  123. Xiao DJ, Bloch ED, Mason JA, Queen WL, Hudson MR, Planas N, Borycz J, Dzubak AL, Verma P, Lee K, Bonino F, Crocellà V, Yano J, Bordiga S, Truhlar DG, Gagliardi L, Brown CM, Long JR (2014) Nat Chem 6:590–595

    Article  CAS  PubMed  Google Scholar 

  124. Impeng S, Siwaipram S, Bureekaew S, Probst M (2017) Phys Chem Chem Phys 19:3782–3791

    Article  CAS  PubMed  Google Scholar 

  125. Tu TN, Nguyen HTT, Nguyen HTD, Nguyen MV, Nguyen TD, Tran NT, Lim KT (2019) RSC Adv 9:16784–16789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rosen AS, Notestein JM, Snurr RQ (2019) ACS Catal 9:3576–3587

    Article  CAS  Google Scholar 

  127. Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ (2014) Chem Mater 26:6185–6192

    Article  CAS  Google Scholar 

  128. Rosen AS, Notestein JM, Snurr RQ (2019) J Comput Chem 40:1305–1318

    Article  CAS  PubMed  Google Scholar 

  129. Vogiatzis KD, Haldoupis E, Xiao DJ, Long JR, Siepmann JI, Gagliardi L (2016) J Phys Chem C 120:18707–18712

    Article  CAS  Google Scholar 

  130. Latimer AA, Kulkarni AR, Aljama H, Montoya JH, Yoo JS, Tsai C, Abild-Pedersen F, Studt F, Nørskov JK (2017) Nat Mater 16:225–229

    Article  CAS  PubMed  Google Scholar 

  131. Verma P, Vogiatzis KD, Planas N, Borycz J, Xiao DJ, Long JR, Gagliardi L, Truhlar DG (2015) J Am Chem Soc 137:5770–5781

    Article  CAS  PubMed  Google Scholar 

  132. Barona M, Gaggioli CA, Gagliardi L, Snurr RQ (2020) J Phys Chem A 124:1580–1592

    Article  CAS  PubMed  Google Scholar 

  133. Petit AS, Pennifold RCR, Harvey JN (2014) Inorg Chem 53:6473–6481

    Article  CAS  PubMed  Google Scholar 

  134. Holmberg RJ, Burns T, Greer SM, Kobera L, Stoian SA, Korobkov I, Hill S, Bryce DL, Woo TK, Murugesu M (2016) Chemistry 22:7711–7715

    Article  CAS  PubMed  Google Scholar 

  135. Wang Y, Wang D, Li Y (2021) Adv Mater 33:2008151

    Article  CAS  Google Scholar 

  136. Li X, Rong H, Zhang J, Wang D, Li Y (2020) Nano Res 13:1842–1855

    Article  CAS  Google Scholar 

  137. Zeng L, Liang H, An P, Yu D, Yang C, Hou Y, Zhang J (2022) Appl Catal A 633:118499

    Article  CAS  Google Scholar 

  138. Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P, Si R, Wang J, Cui X, Li H, Xiao J, Xu T, Deng J, Yang F, Duchesne PN, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X (2015) Sci Adv 1:e1500462

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhu Y, Sun W, Luo J, Chen W, Cao T, Zheng L, Dong J, Zhang J, Zhang M, Han Y, Chen C, Peng Q, Wang D, Li Y (2018) Nat Commun 9:3861

    Article  PubMed  PubMed Central  Google Scholar 

  140. Xiong Y, Sun W, Han Y, Xin P, Zheng X, Yan W, Dong J, Zhang J, Wang D, Li Y (2021) Nano Res 14:2418–2423

    Article  CAS  Google Scholar 

  141. Pan Y, Chen Y, Wu K, Chen Z, Liu S, Cao X, Cheong W-C, Meng T, Luo J, Zheng L, Liu C, Wang D, Peng Q, Li J, Chen C (2019) Nat Commun 10:4290

    Article  PubMed  PubMed Central  Google Scholar 

  142. Liu W, Zhang L, Liu X, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T (2017) J Am Chem Soc 139:10790–10798

    Article  CAS  PubMed  Google Scholar 

  143. Zheng X, Li B, Wang Q, Wang D, Li Y (2022) Nano Res 15:7806–7839

    Article  CAS  Google Scholar 

  144. Rong H, Ji S, Zhang J, Wang D, Li Y (2020) Nat Commun 11:5884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bandal H, Reddy KK, Chaugule A, Kim H (2018) J Power Sources 395:106–127

    Article  CAS  Google Scholar 

  146. Parkinson GS (2016) Surf Sci Rep 71:272–365

    Article  CAS  Google Scholar 

  147. Kiejna A, Pabisiak T (2013) J Phys Chem C 117:24339–24344

    Article  CAS  Google Scholar 

  148. Lemire C, Bertarione S, Zecchina A, Scarano D, Chaka A, Shaikhutdinov S, Freund HJ (2005) Phys Rev Lett 94:166101

    Article  CAS  PubMed  Google Scholar 

  149. Otte K, Schmahl WW, Pentcheva R (2012) Surf Sci 606:1623–1632

    Article  CAS  Google Scholar 

  150. Trainor TP, Chaka AM, Eng PJ, Newville M, Waychunas GA, Catalano JG, Brown GE (2004) Surf Sci 573:204–224

    Article  CAS  Google Scholar 

  151. Yatom N, Neufeld O, Caspary Toroker M (2015) J Phys Chem C 119:24789–24795

    Article  CAS  Google Scholar 

  152. Sivula K, Le Formal F, Grätzel M (2011) Chemsuschem 4:432–449

    Article  CAS  PubMed  Google Scholar 

  153. Hellman A, Pala RGS (2011) J Phys Chem C 115:12901–12907

    Article  CAS  Google Scholar 

  154. Le Formal F, Pastor E, Tilley SD, Mesa CA, Pendlebury SR, Grätzel M, Durrant JR (2015) J Am Chem Soc 137:6629–6637

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zandi O, Hamann TW (2016) Nat Chem 8:778–783

    Article  CAS  PubMed  Google Scholar 

  156. Haschke S, Mader M, Schlicht S, Roberts AM, Angeles-Boza AM, Barth JAC, Bachmann J (2018) Nat Commun 9:4565

    Article  PubMed  PubMed Central  Google Scholar 

  157. Huang Z, Han F, Li M, Zhou Z, Guan X, Guo L (2019) Comput Mater Sci 169:109110

    Article  CAS  Google Scholar 

  158. Chen JYC, Dang L, Liang H, Bi W, Gerken JB, Jin S, Alp EE, Stahl SS (2015) J Am Chem Soc 137:15090–15093

    Article  CAS  PubMed  Google Scholar 

  159. Park G, Kim Y-I, Kim YH, Park M, Jang KY, Song H, Nam KM (2017) Nanoscale 9:4751–4758

    Article  CAS  PubMed  Google Scholar 

  160. Sakamoto Y, Noda Y, Ohno K, Koike K, Fujii K, Suzuki TM, Morikawa T, Nakamura S (2019) Phys Chem Chem Phys 21:18486–18494

    Article  CAS  PubMed  Google Scholar 

  161. Goldsmith ZK, Harshan AK, Gerken JB, Vörös M, Galli G, Stahl SS, Hammes-Schiffer S (2017) Proc Natl Acad Sci 114:3050–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xu F, Chen W, Walenta CA, O’Connor CR, Friend CM (2020) Chem Sci 11:2448–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Qin Q, Liu Y, Shan W, Hou W, Wang K, Ling X, Zhou Y, Wang J (2017) Ind Eng Chem Res 56:12289–12296

    Article  CAS  Google Scholar 

  164. Xie J, Jin R, Li A, Bi Y, Ruan Q, Deng Y, Zhang Y, Yao S, Sankar G, Ma D, Tang J (2018) Nat Catal 1:889–896

    Article  CAS  Google Scholar 

  165. Bhandari S, Khatun R, Khan TS, Khurana D, Poddar MK, Shukla A, Prasad VVDN, Bal R (2022). Green Chem. https://doi.org/10.1039/D2GC02335K

    Article  Google Scholar 

  166. Iwamoto M, Hirata J, Matsukami K, Kagawa S (1983) J Phys Chem 87:903–905

    Article  CAS  Google Scholar 

  167. Murai K-I, Tomita K, Tojo S, Moriga T, Nakabayashi I (2006) Intern J Modern Phys B 20:4249–4254

    Article  CAS  Google Scholar 

  168. Tanaka S, Nakagawa K, Kanezaki E, Katoh M, Murai K-i, Moriga T, Nakabayashi I, Sugiyama S, Kidoguchi Y, Miwa K (2005) J Japan Petroleum Institute 48:223–228

    Article  CAS  Google Scholar 

  169. Tang J-J, Liu B (2016) J Phys Chem C 120:6642–6650

    Article  CAS  Google Scholar 

  170. Jin Y, Sun C, Su S (2015) Phys Chem Chem Phys 17:16277–16284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the authors are grateful for the support from the National Key Projects for Fundamental Research and Development of China (2019YFC1906700) and the National Natural Science Foundation of China (21876049, 22222602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejing Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, J., Wei, J. et al. Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catal Lett 153, 3311–3332 (2023). https://doi.org/10.1007/s10562-022-04238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04238-2

Keywords

Navigation