Skip to main content
Log in

An Efficient Approach of Biodiesel Production from New Sustainable Insect Lipid Using Biomass-Based Carbon Catalyst: Kinetics and Thermodynamic Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the present study, an efficient catalyst based on the immobilization of the heteropoly acid (HPA) on activated biomass-derived carbon was prepared and applied in the conversion of the insect lipid for biodiesel production. The chemical and structural properties of the synthesized catalyst were assessed using different methods (SEM, TEM, XRD, XPS, FTIR, and N2 adsorption–desorption isotherms analysis). Moreover, the sensitivity to the free fatty acid and water in conversion systems was further concerned to explore the catalyst stability under the used reaction conditions. The results showed that the biodiesel yield of 93.87% was obtained under mild operation conditions (carbonization temperature of 500 °C, activation concentration of 3 mol/L, HPA loading of 0.75 wt%, reaction time of 3 h, and reaction temperature of 65 °C). Notably, the findings of this study also suggested that the one-pot surface functionalization strategy with ZnCl2 solution enhanced the pore structure of the biochar support providing more channels for the reactants. The Environmental factor was used to determine the potential of the prepared catalyst in this study. Furthermore, three kinetics models and thermodynamic studies were applied to describe the complicated conversion reaction system. Finally, the physicochemical properties of the synthesized biodiesel were analyzed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kwon Q, Kim J, Han J (2022) Organic waste derived biodiesel supply chain network: deterministic multi-period planning model. Appl Energy 305:117847. https://doi.org/10.1016/j.apenergy.2021.117847

    Article  CAS  Google Scholar 

  2. Chu R, Hu D, Zhu L, Li S, Yin Z, Yu Y (2022) Recycling spent water from microalgae harvesting by fungal pellets to re-cultivate Chlorella vulgaris under different nutrient loads for biodiesel production. Bioresour Technol 344:126227. https://doi.org/10.1016/j.biortech.2021.126227

    Article  CAS  PubMed  Google Scholar 

  3. Song S, Ee AWL, Tan JKN, Cheong JC, Chiam Z, Arora S, Lam WN, Tan HTW (2022) Upcycling food waste using black soldier fly larvae: effects of further composting on frass quality, fertilising effect and its global warming potential. J Clean Prod 288:125664. https://doi.org/10.1016/j.jclepro.2020.125664

    Article  CAS  Google Scholar 

  4. Alic I, Björn V, Kibazohi O, Christian Z, Cecilia L (2021) Co-composting of banana peel and orange peel waste with fish waste to improve conversion by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae. J Clean Prod 318:128570. https://doi.org/10.1016/j.jclepro.2021.128570

    Article  CAS  Google Scholar 

  5. Lalander C, Ermolaev E, Wiklicky V, Vinners B (2020) Process efficiency and ventilation requirement in black soldier fly larvae composting of substrates with high water content. Sci Total Environ 729:138968. https://doi.org/10.1016/j.scitotenv.2020.138968

    Article  CAS  PubMed  Google Scholar 

  6. Chiam Z, Lee JTE, Tan JKN, Song S, Arora S, Tong YW, Tan HTW (2021) Evaluating the potential of okara-derived black soldier fly larval frass as a soil amendment. J Environ Manage 286:112163. https://doi.org/10.1016/j.jenvman.2021.112163

    Article  CAS  PubMed  Google Scholar 

  7. Zheng L, Li Q, Zhang J, Yu Z (2012) Double the biodiesel yield: rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew Energy 41:75–79. https://doi.org/10.1016/j.renene.2011.10.004

    Article  CAS  Google Scholar 

  8. Feng WL, Xiong H, Wang WG, Duan XL, Yang T, Wu C, Yang F, Xiong J, Wang TL, Wang CW (2019) Energy consumption analysis of lipid extraction from black soldier fly biomass. Energy 185:1076–1085. https://doi.org/10.1016/j.energy.2019.07.113

    Article  CAS  Google Scholar 

  9. Jing X, Li Z, Lu B, Han Y, Chi Y, Hu C (2020) Assembly of polyoxometalate with graphene foam as a compressible monolithic catalyst for biodiesel production. Appl Catal A 598:117613. https://doi.org/10.1016/j.apcata.2020.117613

    Article  CAS  Google Scholar 

  10. Munyentwali A, Li H, Yang Q (2022) Review of advances in bifunctional solid acid/base catalysts for sustainable biodiesel production. Appl Catal A 633:118525. https://doi.org/10.1016/j.apcata.2022.118525

    Article  CAS  Google Scholar 

  11. Zhang F, Fang Z, Wang YT (2015) Biodiesel production direct from high acid value oil with a novel magnetic carbonaceous acid. Appl Energy 155:637–647. https://doi.org/10.1016/j.apenergy.2015.06.044

    Article  CAS  Google Scholar 

  12. Zhao Q, Wang H, Zheng H, Sun Z, Shi W, Wang S, Wang X, Jiang Z (2013) Acid-base bifunctional HPA nanocatalysts promoting heterogeneous transesterification and esterification reactions. Catal Sci Technol 3:2204–2209. https://doi.org/10.1039/C3CY20868K

    Article  CAS  Google Scholar 

  13. Dawodu FA, Ayodele OO, Xin J, Zhang S (2014) Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. Appl Energy 114:819–826. https://doi.org/10.1016/j.apenergy.2013.10.004

    Article  CAS  Google Scholar 

  14. Sekhon SS, Park JS (2021) Biomass-derived N-doped porous carbon nanosheets for energy technologies. Chem Eng J 425:129017. https://doi.org/10.1016/j.cej.2021.129017

    Article  CAS  Google Scholar 

  15. Zhang F, Jin Y, Shi J, Zhong Y, Zhu W, Samy M (2015) Polyoxometalates confined in the mesoporous cages of metal-organic frame-work MIL-100 (Fe): efficient heterogeneous catalysts for esterification and acetalization reactions. Chem Eng J 269:236–244. https://doi.org/10.1016/j.cej.2015.01.092

    Article  CAS  Google Scholar 

  16. Ibrahim SF, Asikin-Mijan N, Ibrahim ML, Abdulkareem-Alsultan G, Izham SM, Taufiq-Yap YH (2020) Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Convers Manage 210:112698. https://doi.org/10.1016/j.enconman.2020.112698

    Article  CAS  Google Scholar 

  17. Zhao C, Lv P, Yang L, Xing S, Luo W, Wang Z (2018) Biodiesel synthesis over biochar-based catalyst from biomass waste pomelo peel. Energy Convers Manage 160:477–485. https://doi.org/10.1016/j.enconman.2018.01.059

    Article  CAS  Google Scholar 

  18. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advance in utilization of biochar. Renew Sust Energy Rev 42:1055–1064. https://doi.org/10.1016/j.rser.2014.10.074

    Article  CAS  Google Scholar 

  19. Almeida RPD, Aciole RCG, Infantes-Molina A, Rodríguez-Castellón E, Barros IDCL (2021) Residue-based activated carbon from passion fruit seed as support to H3PW12O40 for the esterification of oleic acid. J Clean Prod 282:124477. https://doi.org/10.1016/j.jclepro.2020.124477

    Article  CAS  Google Scholar 

  20. Rechnia-Gorcy P, Malaika A, Kozowski M (2020) Effective conversion of rapeseed oil to biodiesel fuel in the presence of basic activated carbon catalysts. Catal Today 357:102–112. https://doi.org/10.1016/j.cattod.2019.05.055

    Article  CAS  Google Scholar 

  21. Hebbar HRH, Math MC, Yatish KV (2018) Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil. Energy 143:25–34. https://doi.org/10.1016/j.energy.2017.10.118

    Article  CAS  Google Scholar 

  22. Wang S, Zhao C, Shan R, Wang Y, Yuan H (2017) A novel peat biochar supported catalyst for the transesterification reaction. Energy Convers Manage 139:89–96. https://doi.org/10.1016/j.enconman.2017.02.039

    Article  CAS  Google Scholar 

  23. Budarin V, Clark JH, Hardy JJE, Luque R, Milkowski K, Tavener SJ, Wilson AJ (2006) Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. Angew Chem Int Ed 45:3782–3786. https://doi.org/10.1002/anie.200600460

    Article  CAS  Google Scholar 

  24. Pan H, Liu Y, Xia Q, Zhang H, Guo L, Li H, Jiang L, Yang S (2020) Synergetic combination of mesoporous polymeric acid and base enables heterogeneous catalytic one-pot highly efficient conversion of crude Jatropha oil into biodiesel. Green Chem 22:1698–1709. https://doi.org/10.1039/C9GC04135D

    Article  CAS  Google Scholar 

  25. Manasa P, Lei ZJ, Ran F (2020) Biomass waste derived low cost activated carbon from carchorus olitorius (Jute fiber) as sustainable and novel electrode material. J Energy Storage 30:101494. https://doi.org/10.1016/j.est.2020.101494

    Article  Google Scholar 

  26. Zhou Y, Niu S, Li J (2016) Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energ Convers Manage 114:188–196. https://doi.org/10.1016/j.enconman.2016.02.027

    Article  CAS  Google Scholar 

  27. Newman AD, Lee AF, Wilson K, Young NA (2005) On the active site in H3PW12O40/SiO2 catalysts for fine chemical synthesis. Catal Lett 102:45–50. https://doi.org/10.1007/s10562-005-5201-y

    Article  CAS  Google Scholar 

  28. Xu L, Li W, Hu J, Yang X, Guo Y (2009) Biodiesel production from soybean oil catalyzed by multifunctionalized Ta2O5/SiO2-[H3PW12O40/R] (R=Me or Ph) hybrid catalyst. Appl Catal B 90:587–594. https://doi.org/10.1016/j.apcatb.2009.04.020

    Article  CAS  Google Scholar 

  29. Almohalla M, Rodríguez-Ramos I, Guerrero-Ruiz A (2017) Comparative study of three heteropolyacids supported on carbon materials as catalysts for ethylene production from bioethanol. Catal Sci Technol 7:1892–1901. https://doi.org/10.1039/C7CY00155J

    Article  CAS  Google Scholar 

  30. Jeon Y, Chi WS, Hwang J, Kim DH, Shul Y (2019) Core-shell nanostructured heteropoly acid-functionalized metal-organic frameworks: bifunctional heterogeneous catalyst for efficient biodiesel production. Appl Catal B 242:51–59. https://doi.org/10.1016/j.apcatb.2018.09.071

    Article  CAS  Google Scholar 

  31. Dupont P, Védrine JC, Paumard E, Hecquet G, Lefebvre F (2013) Biodiesel production by acid catalysis with heteropolyacids supported on activated carbon fibers. Appl Catal A 465:432–441. https://doi.org/10.1016/j.apcata.2013.09.006

    Article  CAS  Google Scholar 

  32. Negm NA, Betiha MA, Alhumaimess MS, Hassan HMA, Rabie AM (2019) Clean transesterification process for biodiesel production using heterogeneous polymer-heteropoly acid nanocatalyst. J Clean Prod 238:117854. https://doi.org/10.1016/j.jclepro.2019.117854

    Article  CAS  Google Scholar 

  33. Zhu BJ, Yu XY, Jia Y, Peng FM, Sun B, Zhang MY, Luo T, Liu JH, Huang XJ (2012) Iron and 1,3,5-benzenetricarboxylic metal-organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J Phys Chem C 116:8601–8607. https://doi.org/10.1021/jp212514a

    Article  CAS  Google Scholar 

  34. Vasilopoulou M, Soultati A, Georgiadou DG, Stergiopoulos T, Palilis LC, Kennou S, Stathopoulos NA, Davazoglou D, Argitis P (2014) Hydrogenated under-stoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics. J Mater Chem A 2:1738–1749. https://doi.org/10.1039/C3TA13975A

    Article  CAS  Google Scholar 

  35. Seredych M, Rodriguez-Castellon E, Bandosz TJ (2016) S-doped carbon aerogels/GO composites as oxygen reduction catalysts. J Energy Chem 25:236–245. https://doi.org/10.1016/j.jechem.2016.01.005

    Article  Google Scholar 

  36. Xu SS, Qiu SW, Yaun ZY, Ren TZ, Bandosz TJ (2019) Nitrogen-containing activated carbon of improved electrochemical performance derived from cotton stalks using indirect chemical activation. J Colloid Interface Sci 540:285–294. https://doi.org/10.1016/j.jcis.2019.01.031

    Article  CAS  PubMed  Google Scholar 

  37. Gardy J, Hassanpour A, Lai X, Ahmed MH, Rehan M (2017) Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst. Appl Catal B 207:297–310. https://doi.org/10.1016/j.apcatb.2017.01.080

    Article  CAS  Google Scholar 

  38. Tang ZE, Lim S, Pang YL, Shuit SH, Ong HC (2020) Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production. Renew Energy 158:91–102. https://doi.org/10.1016/j.renene.2020.05.119

    Article  CAS  Google Scholar 

  39. Balajii M, Niju S (2019) A novel biobased heterogeneous catalyst derived from Musa acuminata peduncle for biodiesel production-process optimization using central composite design. Energy Convers Manage 189:118–131. https://doi.org/10.1016/j.enconman.2019.03.085

    Article  CAS  Google Scholar 

  40. Araujo RO, Chaar JS, Queiroz LS, Fiho GNR, Costa CEF, Silva GCT, Landers R, Costa MJF, Goncalves AAS, Souza LKC (2019) Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions. Energy Convers Manage 196:821–830. https://doi.org/10.1016/j.enconman.2019.06.059

    Article  CAS  Google Scholar 

  41. Monge JA, Bakkali BE, Trautwein G, Reinoso S (2018) Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production. Appl Catal B 224:194–203. https://doi.org/10.1016/j.apcatb.2017.10.066

    Article  CAS  Google Scholar 

  42. Badday S, Abdullah AZ, Lee KT (2014) Transesterification of crude Jatropha oil by activated carbon-supported heteropolyacid catalyst in an ultrasound-assisted reactor system. Renew Energy 62:10–17. https://doi.org/10.1016/j.renene.2013.06.037

    Article  CAS  Google Scholar 

  43. Sano N, Yamada K, Tsunauchi S, Tamon H (2017) A novel solid base catalyst for transesterification of triglycerides toward biodiesel production: carbon nanohorn dispersed with calcium ferrite. Chem Eng J 307:135–142. https://doi.org/10.1016/j.cej.2016.08.010

    Article  CAS  Google Scholar 

  44. Ahmed MB, Johir MAH, Zhou J, Ngo HH, Nghiem LD, Richardson C, Moni MA, Bryant MR (2019) Activated carbon preparation from biomass feedstock: clean production and carbon dioxide adsorption. J Clean Prod 225:405–413. https://doi.org/10.1016/j.jclepro.2019.03.342

    Article  CAS  Google Scholar 

  45. Gundogdu A, Duran C, Senturk HB, Soylak M, Imamoglu M, Onal Y (2013) Physicochemical characteristics of a novel activated carbon produced from tea industry waste. J Anal Appl Pyrolysis 104:249–259. https://doi.org/10.1016/j.jaap.2013.07.008

    Article  CAS  Google Scholar 

  46. Donald J, Ohtsuka Y, Xu CC (2011) Effects of activation agents and intrinsic minerals on pore development in activated carbons derived from a Canadian peat. Mater Lett 65:744–747. https://doi.org/10.1016/j.matlet.2010.11.049

    Article  CAS  Google Scholar 

  47. Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190. https://doi.org/10.1016/j.biortech.2005.11.022

    Article  CAS  PubMed  Google Scholar 

  48. Vadery V, Cherikkallinmel SK, Ramakrishnan RM, Sugunan S, Narayanan BN (2019) Green production of biodiesel using waste borosilicate glass derived catalyst and the process up-gradation in pilot scale. Renew Energy 141:1042–1053. https://doi.org/10.1016/j.renene.2019.04.053

    Article  CAS  Google Scholar 

  49. Atadashi IM, Aroua MK, Aziz ARA, Sulaiman NMN (2012) The effects of water on biodiesel production and refining technologies: a review. Renew Sustain Energy Rev 16:3456–3470. https://doi.org/10.1016/j.rser.2012.03.004

    Article  CAS  Google Scholar 

  50. Xie W, Gao C, Li J (2021) Sustainable biodiesel production from low-quantity oils utilizing H6PV3MoW8O40 supported on magnetic Fe3O4/ZIF-8 composites. Renew Energy 168:927–937. https://doi.org/10.1016/j.renene.2020.12.129

    Article  CAS  Google Scholar 

  51. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1089. https://doi.org/10.1016/j.apenergy.2009.10.006

    Article  CAS  Google Scholar 

  52. Encinar JM, Gonzalez JF (2005) Biodiesel from used frying oil. Variables affecting the yields and characteristics of biodiesel. Ind Eng Chem Res 44:5491–5499. https://doi.org/10.1021/ie040214f

    Article  CAS  Google Scholar 

  53. Li H, Liu F, Ma X, Cui P, Guo M, Li Y, Gao Y, Zhou S, Yu M (2020) An efficient basic heterogeneous catalyst synthesis of magnetic mesoporous Fe@C support SrO for transesterification. Renew Energy 149:816–827. https://doi.org/10.1016/j.renene.2019.12.118

    Article  CAS  Google Scholar 

  54. Mansir N, Teo SH, Rabiu I, Yap YHT (2018) Effective biodiesel synthesis from waste cooking oil and biomass residue solid green catalyst. Chem Eng J 347:137–144. https://doi.org/10.1016/j.cej.2018.04.034

    Article  CAS  Google Scholar 

  55. Lanfredi S, Matos J, da Silva SR, Djurado E, Sadouki AS, Chouaih A, Poon PS, González ERP, Nobre MAL (2020) K- and Cu-doped CaTiO3-based nanostructured hollow spheres as alternative catalysts to produce fatty acid ethyl esters as potential biodiesel. Appl Catal B 272:118986. https://doi.org/10.1016/j.apcatb.2020.118986

    Article  CAS  Google Scholar 

  56. Macawile MC, Quitain AT, Kida T, Tan R, Auresenia J (2020) Green synthesis of sulfonated organosilane functionalized multiwalled carbon nanotubes and its catalytic activity for one-pot conversion of high free fatty acid seed oil to biodiesel. J Clean Prod 275:123146. https://doi.org/10.1016/j.jclepro.2020.123146

    Article  CAS  Google Scholar 

  57. Gohain M, Devi A, Deka D (2017) Musa balbisiana Colla peel as highly effective renewable heterogeneous base catalyst for biodiesel production. Ind Crops Prod 109:8–18. https://doi.org/10.1016/j.indcrop.2017.08.006

    Article  CAS  Google Scholar 

  58. Booramurthy VK, Kasimani R, Subramanian D, Pandian S (2020) Production of biodiesel from tannery waste using a stable and recyclable nano-catalyst: an optimization and kinetic study. Fuel 260:116373. https://doi.org/10.1016/j.fuel.2019.116373

    Article  CAS  Google Scholar 

  59. Ma Y, Wang Q, Sun X, Wu C, Gao Z (2017) Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Renew Energy 107:522–530. https://doi.org/10.1016/j.renene.2017.02.007

    Article  CAS  Google Scholar 

  60. Singh R, Kumar A, Sharma YC (2019) Biodiesel production from microalgal oil using barium-calcium-zinc mixed oxide base catalyst: optimization and kinetic studies. Energ Fuel 33:1175–1184. https://doi.org/10.1021/acs.energyfuels.8b03461

    Article  CAS  Google Scholar 

  61. Darnoko D, Cheryan M (2000) Kinetics of palm oil transesterification in a batch reactor. J Am Oil Chem Soc 77:1263–1267. https://doi.org/10.1007/s11746-000-0198-y

    Article  CAS  Google Scholar 

  62. Oladipo B, Betiku E (2020) Optimization and kinetic studies on conversion of rubber seed (Hevea brasiliensis) oil to methyl esters over a green biowaste catalyst. J Environ Manage 268:110705. https://doi.org/10.1016/j.jenvman.2020.110705

    Article  CAS  PubMed  Google Scholar 

  63. Oladipo B, Ojumu TV, Latinwo LM, Betiku E (2020) Pawpaw (Carica papaya) Peel waste as a novel green heterogeneous catalyst for Moringa oil methylesters synthesis: process optimization and kinetic study. Energies 13:5834. https://doi.org/10.3390/en13215834

    Article  CAS  Google Scholar 

  64. Krishnamurthy KN, Sridhara SN, Ananda Kumar CS (2020) Optimization and kinetic study of biodiesel production from Hydnocarpus wightianaoil and dairy waste scum using snail shell CaO nano catalyst. Renew Energy 146:280–296. https://doi.org/10.1016/j.renene.2019.06.161

    Article  CAS  Google Scholar 

  65. Lopez Granados M, Zafra Poves MD, Martin Alonso D, Mariscal R, Cabello Galisteo F, Moreno-Tost R, Santamaria J, Fierro JLG (2007) Biodiesel from sunflower oil by using activated calcium oxide. Appl Catal B 73:317–326. https://doi.org/10.1016/j.apcatb.2006.12.017

    Article  CAS  Google Scholar 

  66. Qu S, Chen C, Guo M, Jie L, Yi W, Ding J, Miao Z (2020) Synthesis of MgO/ZSM-5 catalyst and optimization of process parameters for clean production of biodiesel from Spirulina platensis. J Clean Prod 276:123382. https://doi.org/10.1016/j.jclepro.2020.123382

    Article  CAS  Google Scholar 

  67. Gaurav A, Dumas S, Mai CTQ, Ng FTT (2019) A kinetic model for a single step biodiesel production from a high free fatty acid (FFA) biodiesel feedstock over a solid heteropolyacid catalyst. Green Energy Environ 4:328–341. https://doi.org/10.1016/j.gee.2019.03.004

    Article  Google Scholar 

  68. Hussein MF, Naga AOA, Saied M, Abubaker MM, Shaban SA, Kady FY (2021) Potato peel waste-derived carbon-based solid acid for the esterification of oleic acid to biodiesel. Environ Technol Innov 21:101355. https://doi.org/10.1016/j.eti.2021.101355

    Article  CAS  Google Scholar 

  69. Pithadia D, Patel A (2021) Conversion of bioplatform molecule, succinic acid to value-added products via esterification over 12-tungstosilicic acid anchored to MCM-22. Biomass Bioenergy 151:106178. https://doi.org/10.1016/j.biombioe.2021.106178

    Article  CAS  Google Scholar 

  70. Guan Q, Li Y, Chen Y, Shi Y, Gu J, Li B, Miao R, Chen Q, Ning P (2017) Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification. RSC Adv 7:7250–7258. https://doi.org/10.1039/C6RA28067F

    Article  CAS  Google Scholar 

  71. Wang YT, Fang Z, Zhang F (2019) Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst. Catal Today 319:172–181. https://doi.org/10.1016/j.cattod.2018.06.041

    Article  CAS  Google Scholar 

  72. Barsa CS, Normand MD, Peleg M (2012) On models of the temperature effect on the rate of chemical reactions and biological processes in foods. Food Eng Rev 4:191–202. https://doi.org/10.1007/s12393-012-9056-x

    Article  CAS  Google Scholar 

  73. Feyzi M, Shahbazi Z (2017) Preparation, kinetic and thermodynamic studies of Al-Sr nanocatalysts for biodiesel production. J Taiwan Inst Chem Eng 71:145–155. https://doi.org/10.1016/j.jtice.2016.11.023

    Article  CAS  Google Scholar 

  74. Zhu Z, Liu Y, Cong W, Zhao X, Janaun J, Wei T, Fang Z (2021) Soybean biodiesel production using synergistic CaO/Ag nano catalyst: Process optimization, kinetic study, and economic evaluation. Ind Crop Prod 166:113479. https://doi.org/10.1016/j.indcrop.2021.113479

    Article  CAS  Google Scholar 

  75. Foroutan R, Mohammadi R, Razeghi J, Ramavandi B (2021) Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst. Renew Energy 168:1207–1216. https://doi.org/10.1016/j.renene.2020.12.094

    Article  CAS  Google Scholar 

  76. Guerra EM, Gude VG (2017) Assessment of sustainability indicators for biodiesel production. Appl Sci 7:869–882. https://doi.org/10.3390/app7090869

    Article  CAS  Google Scholar 

  77. Rabie AM, Shaban M, Abukhadra MR, Hosny R, Ahmed SA, Negm NA (2019) Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. J Mol Liq 279:224–231. https://doi.org/10.1016/j.molliq.2019.01.096

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Open Project of Beijing Key Laboratory for Enze Biomass and Fine Chemicals, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing (No. 20210005), Hubei Key Laboratory of Novel Reactor and Green Chemical Technology (No. NRGC202209), and The Open Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education (No. LKF2021008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Duan or Tielin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Yan, S., Duan, X. et al. An Efficient Approach of Biodiesel Production from New Sustainable Insect Lipid Using Biomass-Based Carbon Catalyst: Kinetics and Thermodynamic Study. Catal Lett 153, 3297–3310 (2023). https://doi.org/10.1007/s10562-022-04232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04232-8

Keywords

Navigation