Skip to main content
Log in

V2CTx MXene: A Promising Catalyst for Low-Temperature Aerobic Oxidative Desulfurization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Aerobic oxidative desulfurization (AODS) promises a sustainable alternative desulfurization process for fuel, yet is still limited by high temperature and low efficiency for oxygen activation. Here we report that the monolayer two-dimensional vanadium carbide (V2CTx) MXene can emerge as a robust and stable catalyst for the oxidation of thiophenic compounds with oxygen in air as an oxidant. The catalyst performs a higher mass specific activity over the state-of-art vanadium oxides, activates the reaction at 70 °C, and achieves effective conversion of various sulfides under mild condition. Coupling characterizations with DFT calculations, we reveal that the abundant low valence V species accompanied anion vacancies on the surface of MXene have excellent oxygen activation capacity, which well explains its outstanding catalytic performance at low temperature. Moreover, the catalyst maintains its activity after 6 cycles of reuse, and is expected to act as a sustainable, efficient and stable AODS catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carmichael GR, Streets DG, Calori G et al (2002) Environ Sci Technol 36(22):4707–4713

    Article  CAS  PubMed  Google Scholar 

  2. Li Z, Cui Y, Li C et al (2019) Sep Purif Technol 219(15):9–15

    Article  CAS  Google Scholar 

  3. Anasori B, Lukatskaya MR, Gogotsi Y (2017) Nat Rev Mater 2(2):16098

    Article  CAS  Google Scholar 

  4. Luo J, Chao Y, Tang Z et al (2019) Ind Eng Chem Res 58(29):13303–13312

    Article  CAS  Google Scholar 

  5. Stanislaus A, Marafi A, Rana MS (2010) Catal Today 153(1–2):1–68

    Article  CAS  Google Scholar 

  6. Li Y, Chi K, Zhang H et al (2018) Fuel Process Technol 180:56–66

    Article  CAS  Google Scholar 

  7. Wu Q, Li Y, Hou Z et al (2018) Fuel Process Technol 172:55–64

    Article  CAS  Google Scholar 

  8. Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P et al (2010) J Chem Technol Biotechnol 85(7):879–890

    Article  CAS  Google Scholar 

  9. Mirante F, Alves AC, Julião D et al (2020) Fuel 259:116213

    Article  CAS  Google Scholar 

  10. Wang C, Qiu Y, Wu HY et al (2020) Fuel 270:117498

    Article  CAS  Google Scholar 

  11. Bhadra BN, Jhung SH (2019) App Catal B: Env 259:118021

    Article  CAS  Google Scholar 

  12. Mondol MMH, Bhadra BN, Jhung SH (2021) App Catal B: Env 288:19988

    Article  Google Scholar 

  13. Chen B, Wang L, Gao S (2015) ACS Catal 5(10):5851–5876

    Article  CAS  Google Scholar 

  14. Song Y, Bai J, Jiang S et al (2021) Fuel 306:121751

    Article  CAS  Google Scholar 

  15. Dong Y, Zhang J, Ma Z et al (2019) Chem Commun 55(93):13995–13998

    Article  CAS  Google Scholar 

  16. Bai J, Song Y, Wang C et al (2021) Energy Fuels 35(15):12310–12318

    Article  CAS  Google Scholar 

  17. Tang N, Zhao X, Jiang Z et al (2014) Chinese J Catal 35(9):1433–1437

    Article  CAS  Google Scholar 

  18. Maayan G, Popovitz-Biro R, Neumann R (2006) J Am Chem Soc 128(15):4968–4969

    Article  CAS  PubMed  Google Scholar 

  19. Chi M, Su T, Sun L et al (2020) App Catal B: Env 275:119134

    Article  CAS  Google Scholar 

  20. Ding J-W, Wang R (2016) Chin Chem Lett 27(5):655–658

    Article  Google Scholar 

  21. Tomskii IS, Vishnetskaya MV, Vakhrushin PA et al (2017) Pet Chem 57(10):908–913

    Article  CAS  Google Scholar 

  22. Song G, Wang F, Zhang H et al (1998) Synthetic Commun 28(15):2783–2787

    Article  CAS  Google Scholar 

  23. Ma CH, Dai B, Xu CX et al (2013) Catal Today 211:84–89

    Article  CAS  Google Scholar 

  24. Gu Q, Wen G, Ding Y et al (2017) Green Chem 19(4):1175–1181

    Article  CAS  Google Scholar 

  25. Lu L, He J, Wu P et al (2018) Green Chem 20(19):4453–4460

    Article  CAS  Google Scholar 

  26. Rajendran A, Fan HX, Feng J et al (2020) Chem-Asian J 15(14):2038–2059

    Article  CAS  PubMed  Google Scholar 

  27. Zhang M, Liu J, Li H et al (2020) App Catal B: Env 27:118936

    Article  Google Scholar 

  28. Wang C, Li H, Zhang X et al (2020) Energy Fuels 34(2):2612–2616

    Article  CAS  Google Scholar 

  29. Dai L, Wei YC, Xu XY et al (2020) ChemCatChem 12(6):1734–1742

    Article  CAS  Google Scholar 

  30. Diao JY, Hu MM, Lian Z et al (2018) ACS Catal 8(11):10051–10057

    Article  CAS  Google Scholar 

  31. Li Z, Yu L, Milligan C et al (2018) Nat Commun 9:5258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Z, Cui Y, Wu Z et al (2018) Nat Catal 1(5):349–355

    Article  CAS  Google Scholar 

  33. Gao YP, Wang LB, Li ZY et al (2014) Solid State Sci 35:62–65

    Article  CAS  Google Scholar 

  34. Huang X, Song M, Zhang J et al (2022) Nano Res 15(5):3927–3932

    Article  CAS  Google Scholar 

  35. Thakur R, Hoffman M, VahidMohammadi A et al (2020) ChemCatChem 12(14):3639–3643

    Article  CAS  Google Scholar 

  36. Wang JP, Guan YF, Zhang Q et al (2022) Appl Surf Sci 582:152481

    Article  CAS  Google Scholar 

  37. Tang Y, Yang C, Xu X et al (2022) Adv Energy Mater 12(12):2103867

    Article  CAS  Google Scholar 

  38. Ibragimova R, Rinke P, Komsa H-P (2022) Chem Mater 34(7):2896–2906

    Article  CAS  Google Scholar 

  39. Wu M, Wang B, Hu Q et al (2018) Mater Design 11(11):2112

    Google Scholar 

  40. Alhabeb M, Maleski K, Anasori B et al (2017) Chem Mater 29(18):7633–7644

    Article  CAS  Google Scholar 

  41. Matthews K, Zhang T, Shuck CE et al (2022) Chem Mater 34(2):499–509

    Article  CAS  Google Scholar 

  42. Naguib M, Halim J, Lu J et al (2013) J Am Chem Soc 135(43):15966–15969

    Article  CAS  PubMed  Google Scholar 

  43. Huang D, Xie Y, Lu D et al (2019) Adv Mater 31(24):e1901117

    Article  PubMed  Google Scholar 

  44. Zhu X, Cao Z, Wang W et al (2021) ACS Nano 15(2):2971–2983

    Article  CAS  PubMed  Google Scholar 

  45. Champagne A, Shi L, Ouisse T et al (2018) Phys Rev B 97(11):115439

    Article  CAS  Google Scholar 

  46. Ming FW, Liang HF, Zhang WL et al (2019) Nano Energy 62:853–860

    Article  CAS  Google Scholar 

  47. Spanier JE, Gupta S, Amer M et al (2005) Phys Rev B 71(1):012103

    Article  Google Scholar 

  48. Liu D, Wang L, He Y et al (2020) Energy Technol 9(2):2000753

    Article  Google Scholar 

  49. Miao P, Wu J, Du YC et al (2018) J Mater Chem C 6(40):10855–10860

    Article  CAS  Google Scholar 

  50. Narayanasamy M, Kirubasankar B, Shi M et al (2020) Chem Commun 56(47):6412–6415

    Article  CAS  Google Scholar 

  51. Zhao Y, Teng BT, Wen XD et al (2012) J Phys Chem C 116(30):15986–15991

    Article  CAS  Google Scholar 

  52. Lv N, Yin J, Fu W et al (2021) ChemPhysChem 22(2):168–177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (No. 21808098), the Natural Science Foundation of Shandong Province (No. ZR2019QB025) and the Yantai Science and Technology Development Program (No. 2019XDHZ106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hou Chen or Huawei Yang.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3514 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Zhang, Y., Chen, H. et al. V2CTx MXene: A Promising Catalyst for Low-Temperature Aerobic Oxidative Desulfurization. Catal Lett 153, 3103–3110 (2023). https://doi.org/10.1007/s10562-022-04227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04227-5

Keywords

Navigation