Skip to main content
Log in

Indole HDN Using Iridium Nanoparticles Supported on Titanium Nanotubes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The HDN of indole was studied over iridium modified titanate nanotube catalyst. Titanium nanotube was prepared by the alkaline hydrothermal method. Iridium was added by wetness impregnation. The activity was compared with Ir–TiO2 and commercial NiMo/Al2O3 catalysts. The catalysts prepared were characterized by X-ray diffraction (XRD), N2 adsorption isotherms, UV–Vis-DRS, FTIR, XPS, TEM, Py-FTIR and H2-Chemisorption. XRD, N2 isotherms and UV–vis-DRS confirmed the nanotube structure. The analysis showed that the mesoporous structure was maintained after Ir incorporation. The results showed that titanate nanotube as support significantly reduce the size of iridium crystallites and improves its dispersion considerably. Iridium titanate nanotube presented abundant and strong Brönsted acidity compared with TiO2 iridium catalyst. According a kinetic study, Ir–TNT was the most active catalyst for indole HDN, in mild conditions in a Batch reactor. The Brönsted acidity in synergic effect with Lewis acidity and hydrogenolysis capacity of iridium species were the responsible for the good activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Song C (2003) Catal Today 86:211

    Article  CAS  Google Scholar 

  2. Stanislaus A, Marafi A, Rana MS (2010) Catal Today 153:1

    Article  CAS  Google Scholar 

  3. Chandra Srivastava V (2012) RSC Adv 2:759

    Article  CAS  Google Scholar 

  4. Rashidi F, Sasaki Rashidi AM, Kharat AN, Jozani KJ (2013) J. Catal 299(321):51. https://doi.org/10.1016/j.jcat.2012.11.012

    Article  CAS  Google Scholar 

  5. De León JN, Zepeda TA, Alonso-Nuñez G, Galván DH, Pawelec B (2014) J. Catal 321(51):61

    Google Scholar 

  6. Nikulshin PA, Salnikov VA, Mozhaev AV, Minaev PP, Kogan VM, Pimerzin AA (2014) J Catal 309:386

    Article  CAS  Google Scholar 

  7. Dzwigaj S, Louis C, Breysse M, Cattenot M, Belliere V, Geantet C, Vrinat M, Blanchard P, Payen E, Inoue S, Kudod H, Yoshimura Y (2003) Appl Catal 41:181

    Article  CAS  Google Scholar 

  8. Cedeño L, Zanella R, Ramirez J, Mendoza H, Hernandez G, Schacht P (2004) Catal Today 98:83

    Article  Google Scholar 

  9. Inoue S, Muto A, Kudou H, Ono T (2004) Appl Catal A 269:7

    Article  CAS  Google Scholar 

  10. Breysse M, Geantet C, Afanasiev P, Blanchard J, Vrinat M (2008) Catal Today 130:3

    Article  CAS  Google Scholar 

  11. Ledesma BC, Anunziata OA, Beltramone AR (2016) Appl Catal B: Environ 192:220

    Article  CAS  Google Scholar 

  12. Ledesma BC, Juárez JM, Beltramone AR (2020) Catal Today 349:210

    Article  CAS  Google Scholar 

  13. Ledesma BC, Martínez ML, Beltramone AR (2020) Catal Today 349:178

    Article  CAS  Google Scholar 

  14. Marcos Esteban R, Schütte K, Brandt P, Marquardt D, Meyer H, Beckert F, Mülhaupt R, Kölling H, Janiak C (2015) Nano-Struct Nano-Objects 2:11

    Article  Google Scholar 

  15. Machado BF, Gomes HT, Serp P, Kalck P, Faria JL (2010) Chem Cat Chem 2:190

    CAS  Google Scholar 

  16. Ji Y-G, Wei K, Liu T, Wu L, Zhang W-H (2017) Adv Synth Catal 359:933

    Article  CAS  Google Scholar 

  17. Li HB, Liu L, Ma X-Y (2016) Synth React Inorg Met Org Nano Met Chem 46:1499

    Article  CAS  Google Scholar 

  18. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Adv Mater 11:1307

    Article  CAS  Google Scholar 

  19. Meynen V, Cool P, Vansant EF (2009) Micropor Mesopor Mat 125:170

    Article  CAS  Google Scholar 

  20. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024

    Article  CAS  Google Scholar 

  21. Zhao D, Su T, Rodríguez-Padrón D, Lü H, Len C, Luque R, Yang Z (2022) Mat Today Chem 24:100745

    Article  CAS  Google Scholar 

  22. Emeis CA (1993) J of Catal 141:347

    Article  CAS  Google Scholar 

  23. Escobar J, Toledo JA, Cortes MA, Mosqueira ML, Ferrat PG, V, Lopez-Salinas E, Torres-Garcia E, (2005) Catal. Today 106:222

    Article  CAS  Google Scholar 

  24. Xiao N, Li Z, Liu J, Gao Y (2010) Thin Solid Films 519:541

    Article  CAS  Google Scholar 

  25. Riss A, Berger T, Grothe H, Bernardi J, Diwald O, Knözinger E (2007) Nano Lett 2:433

    Article  Google Scholar 

  26. Méndez-Galván M, Celaya CA, Jaramillo Quintero OA, Muniz J, Díaz G, Lara-García HA (2021) Nanoscale Adv 3:1382

    Article  PubMed  Google Scholar 

  27. Wu L, Li F, Xu Y, Zhang JW, Zhang D, Li G (2015) Appl Catal B-Environ 164:217

    Article  CAS  Google Scholar 

  28. Guo L, Zhao J, Wang X, Xu X, Liu H, Li Y (2009) Int J Appl Ceram Technol 6:641

    Article  Google Scholar 

  29. Sim LC, Leong KH, Ibrahim S, Saravanan P (2014) J Mater Chem A 2(15):5315

    Article  CAS  Google Scholar 

  30. Pietrzyk B, Klimek L (2004) Ann Transplant 9:10

    Google Scholar 

  31. Xiao M, Wang L, Huang X, Wu Y, Dang Z (2009) J Alloys Compd 470:486

    Article  CAS  Google Scholar 

  32. van Dijk B, Menendez Rodriguez G, Wu L, Hofmann JP, Macchioni A, Hetterscheid DGH (2020) ACS Catal 10:4398

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang L, Ozkan US (1996) Stud Surf Sci Catal 101:1223

    Article  CAS  Google Scholar 

  34. Liu X, Guo Y, Dasgupta A, He H, Xu D, Guan Q (2022) Renewable Energy 183:627

    Article  CAS  Google Scholar 

  35. Guo Y, He H, Liu X, Chen Z, Rioux RM, Janik MJ, Savage PE (2021) Chem Eng J 406:126853

    Article  CAS  Google Scholar 

  36. Liu X, Guo Y, He H, Zheng L, Kong L (2022) AIChE J 68(3):e17531

    Article  CAS  Google Scholar 

  37. Yu H, Yu MH, Tang W, Li K, Zhao S, Yin H, Zhou S (2019) Appl Mater Interfaces 11:6958

    Article  CAS  Google Scholar 

  38. Sharif MJ, Maity P, Yamazoe S, Tsukuda T (2013) Chem Lett 42:1023

    Article  CAS  Google Scholar 

  39. Corma A, Serna P, Concepción P, Calvino J (2008) Am Chem Soc 130:8748

    Article  CAS  Google Scholar 

  40. Makosch M, Lin W-I, Bumbálek V, Sá J, Medlin JW, Hungerbühler K, van Bokhoven JA (2012) ACS Catal 2:2079

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NANOTEC, CONICET, Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina. We acknowledge the financial support provided by CONICET Argentina, PIP CONICET 11220120100218CO 2020 and FONCYT PICT-2014-1740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea R. Beltramone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledesma, B.C., Martínez, M.L., Gómez Costa, M.B. et al. Indole HDN Using Iridium Nanoparticles Supported on Titanium Nanotubes. Catal Lett 153, 3111–3121 (2023). https://doi.org/10.1007/s10562-022-04221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04221-x

Keywords

Navigation