Skip to main content

Advertisement

Log in

Tailored Synthesis of Ga2O3 Nanofibers Towards Enhanced Photocatalytic Hydrogen Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ga2O3 have attracted considerable attention in the field of photocatalysis. However, the preparation of 1D nanostructured Ga2O3 photocatalyst with high purity and controllable structures is still in challenge. Herein, we report the synthesis of Ga2O3 nanofibers with controllable structures by using electronspinning method and annealing treatment. The SEM, TEM, XRD and XPS results revealed that the produced Ga2O3 photocatalysts have three different morphologies, including nanofibers, nanofibers/nanobelts and nanobelts, which was obtained by tailoring the raw materials and electronspinning parameters. The photocatalytic hydrogen evolution results show that the Ga2O3 nanofibers display the highest hydrogen evolution rate among the three samples. The excellent photocatalytic performance of Ga2O3 nanofibers photocatalyst could be resulted from its larger BET specific surface area and pore volume, which can provide more active sites and shorten the charge transfer distance.

Graphical Abstract

We report the controlled preparation of Ga2O3 nanofibers forphotocatalytic hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Y, Zhou H, Wang H, Zhang Y, Dionysiou D (2021) Chem Eng J 418:129343

    Article  CAS  Google Scholar 

  2. Wang C, Li S, Cai M, Yan R, Dong K, Zhang J, Liu Y (2022) J Colloid Interface Sci 619:307–321

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Zhang J, Balogun M, TongY HY (2022) Mater Today Sustain 18:100118

    Article  Google Scholar 

  4. Li S, Wang C, Cai M, Liu Y, Dong K, Zhang J (2022) J Colloid Interface Sci 624:219–132

    Article  CAS  PubMed  Google Scholar 

  5. Li S, Cai M, Liu Y, Wang C, Yan R, Chen X (2023) Adv Powder Mater 2:100073

    Article  Google Scholar 

  6. Ran J, Zhang J, Yu J, Jaroniec M, Qiao S (2014) Chem Soc Rev 43(22):7787–7812

    Article  CAS  PubMed  Google Scholar 

  7. Fu C, Wu X, Yang J (2018) Adv Mate 30(48):1802106

    Article  Google Scholar 

  8. Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K (2020) Nature 581(7809):411–414

    Article  CAS  PubMed  Google Scholar 

  9. Hu H, Wang Z, Cao L, Zeng L, Zhang C, Lin W, Wang C (2021) Nat Chem 13(4):358–366

    Article  CAS  PubMed  Google Scholar 

  10. Jiang X, Fuji M (2022) Catal Lett 152(10):3192–3201

    Article  CAS  Google Scholar 

  11. Zhang Y, Hu L, Zhang Y, Wang X, Wang H (2022) Appl Catal B-Environ 315:121540

    Article  CAS  Google Scholar 

  12. Ismael M (2020) Sol Energy 211:522–546

    Article  CAS  Google Scholar 

  13. Zhang J, Huang Y, Lu X, Yang J, Tong Y (2021) ACS Sustainable Chem Eng 9(24):8306–8314

    Article  CAS  Google Scholar 

  14. Wang Y, Chen D, Zhang J, Balogun M, Wang P, Ton Y, Huang Y (2022) Adv Funct Mater 32(13):2112738

    Article  CAS  Google Scholar 

  15. Lu X, Ye K, Zhang S, Zhang J, Yang J, Huang Y, Ji H (2022) Chem Eng J 428:131027

    Article  CAS  Google Scholar 

  16. Guo S, Zhao T, Jin Z, Wan X, Wang P, Shang J, Han S (2015) J Power Sources 293:17–22

    Article  CAS  Google Scholar 

  17. Nasir J, Rehman Zu, Shah SNA, Khan A, Butler IS, Catlow CRA (2020) J Mater Chem A 8(40):20752–20780

    Article  CAS  Google Scholar 

  18. Fu J, Yu J, Jiang C, Cheng B (2018) Adv Energy Mater 8(3):1701503

    Article  Google Scholar 

  19. Zhang Y, Hu L, Zhou H, Wang H, Zhang Y (2022) ACS Appl Nano Mater 5(1):391–400

    Article  CAS  Google Scholar 

  20. Cai M, Wang C, Liu Y, Yan R, Li S (2022) Sep Purif Technol 300:121892

    Article  CAS  Google Scholar 

  21. Cai M, Liu Y, Dong K, Wang C, Li S (2023) J Colloid Interface Sci 629:276–286

    Article  CAS  PubMed  Google Scholar 

  22. Cai M, Liu Y, Wang C, Lin W, Li S (2023) Sep Purif Technol 304:122401

    Article  CAS  Google Scholar 

  23. Zhou X, Dong H, Ren A-M (2016) Int J Hydrogen Energy 41(13):5670–5681

    Article  CAS  Google Scholar 

  24. Li L, Ma B, Xie H, Yue M, Cong R, Gao W, Yang T (2016) RSC Adv 6(64):59450–59456

    Article  CAS  Google Scholar 

  25. Wang T, Wang Z-W, Zhang Y, Yang X-T, Zhu Y-Z, Wang H-F (2021) Small 17(52):2104195

    Article  CAS  Google Scholar 

  26. Ali S, Ali S, Ismail PM, Shen H, Zada A, Ali A, Ahmad I, Shah R, Khan I, Chen J, Cui C, Wu X, Kong Q, Yi J, Zu X, Xiao H, Raziq F, Qiao L (2022) Appl Catal B-Environ 307:121149

    Article  CAS  Google Scholar 

  27. Jin S, Wang X, Wang X, Ju M, Shen S, Liang W, Zhao Y, Feng Z, Playford HY, Walton RI, Li C (2015) J Phy Chem C 119(32):18221–18228

    Article  CAS  Google Scholar 

  28. Zhang X, Huang H, Zhang Y, Liu D, Tong N, Lin J, Chen L, Zhang Z, Wang X (2018) ACS Omega 3(10):14469–14476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, Zhang Z, Huang H, Wang Y, Tong N, Lin J, Liu D, Wang X (2018) Nanoscale 10(45):21509–21517

    Article  CAS  PubMed  Google Scholar 

  30. Sudrajat H, Nguyen TK (2020) Optik 223:165370

    Article  CAS  Google Scholar 

  31. Jiang J, Zhang J, Li J, Xu D (2019) Chem Phys Lett 719:8–11

    Article  CAS  Google Scholar 

  32. Reddy L, Ko Y, Yu S (2015) Nanoscale Res Lett 10(1):1–7

    Article  Google Scholar 

  33. Yoo TH, Ryou H, Lee IG, Cho BJ, Hwang WS (2019) Catalysts 9(12):1005

    Article  CAS  Google Scholar 

  34. Hou H, Wang L, Gao F, Wei G, Tang B, Yang W, Wu T (2014) J Am Chem Soc 136(48):16716–16719

    Article  CAS  PubMed  Google Scholar 

  35. Hou H, Shang M, Gao F, Wang L, Liu Q, Zheng J, Yang Z, Yang W (2016) ACS Appl Mater Interfaces 8(31):20128–20137

    Article  CAS  PubMed  Google Scholar 

  36. Hu J, Zhang S, Tang B (2021) Energy Storage Mater 37:530–555

    Article  Google Scholar 

  37. Li S, Cai M, Liu Y, Wang C, Lv K, Chen X (2022) Chin J Catal 43(10):2652–2664

    Article  CAS  Google Scholar 

  38. Du F, Yang D, Sun Y, Jiao Y, Teng F, Fan H (2021) Ceram Int 47(4):4963–4971

    Article  CAS  Google Scholar 

  39. Xie Y, Nie Y, Zheng Y, Luo Y, Zhang J, Yi Z, Zheng F, Liu L, Chen X, Cai P, Wu P (2021) Mater Today Commun 29:102873

    Article  CAS  Google Scholar 

  40. Kim Y-H, Heo Y-J, Koh W-G, Shin G, Choi KH (2021) J Mater Sci-Mater El 32(3):3402–3414

    Article  CAS  Google Scholar 

  41. Yang W, Ma G, Fu Y, Peng K, Yang H, Zhan X, Yang W, Wang L, Hou H (2022) Chem Eng J 429:132381

    Article  CAS  Google Scholar 

  42. Makeswaran N, Kelly JP, Haslam JJ, McKeown JT, Ross MS, Ramana CV (2022) ACS Omega 7(36):32816–32826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Michel CR, Martínez-Preciado AH (2022) Ceram Int 48(7):9746–9752

    Article  CAS  Google Scholar 

  44. Joseph S, Lee JM, Benzigar MR, Yi J, Karakoti A, Vinu A (2021) Carbon 180:101–109

    Article  CAS  Google Scholar 

  45. Yang H, Tang J, Luo Y, Zhan X, Liang Z, Jiang L, Hou H, Yang W (2021) Small 17(36):2102307

    Article  CAS  Google Scholar 

  46. Feng D, Cheng Y, He J, Zheng L, Shao D, Wang W, Wang W, Lu F, Dong H, Liu H, Zheng R, Liu H (2017) Carbon 125:454–463

    Article  CAS  Google Scholar 

  47. Yang Y, Zhu Y, Ye X, Zhou K, Li P, Chen H, Dan Y, Yang W, Hou H (2020) Catal Lett 151(2):359–369

    Article  Google Scholar 

  48. Zhan X, Fang Z, Li B, Zhang H, Xu L, Hou H, Yang W (2021) J Mater Chem A 9(47):27084–27094

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work supported by China Postdoctoral Science Foundation (Grant No. 2020M681966), National Natural Science Foundation of China (NSFC, Grant No. 52272085), the exchange project of the sixth China-Northern Macedonia Science and Technology Meeting (Grant No. 6-11) and Natural Science Foundation of Ningbo Municipal Government (Grant No. 2021J145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huilin Hou, Hong Sun or Yongbo Kuang.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5486 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Yang, W., Sun, H. et al. Tailored Synthesis of Ga2O3 Nanofibers Towards Enhanced Photocatalytic Hydrogen Evolution. Catal Lett 153, 2950–2958 (2023). https://doi.org/10.1007/s10562-022-04217-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04217-7

Keywords

Navigation