Skip to main content

Advertisement

Log in

Preparation of Lanthanum Hexaaluminate Supported Nickel Catalysts for Hydrogen Production by Ammonia Decomposition

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Lanthanum hexaaluminate (LHA) supported NiO catalysts (xNi/LHA) with varied mass loading of Ni (x = 15, 20, 25, 30 wt%) were prepared by impregnating NiO nanoparticles (NPs) on LHA support that synthesized through urea combustion method. The catalysts were characterized by high-resolution transmission electron microscope (HRTEM), temperature programmed reduction (TPR), temperature programmed desorption (TPD), etc. The results showed that NiO NPs were dispersed densely on the LHA surface. The 25Ni/LHA catalyst provided the optimal ammonia conversion of 85.75% with a space velocity of 30,000 ml gcat−1 h−1 at 600 °C, corresponding to the hydrogen production rate of 28.73 mmol H2 gcat−1 min−1. The strong alkalinity of LHA could modify the interaction between the active sites and the nitrogen of ammonia, which was conducive to the ammonia decomposition reaction. The high performance of the catalyst represented a feasible approach towards the application of ammonia as hydrogen carrier to produce hydrogen.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zeng R, Feller M, Ben-David Y et al (2017) Hydrogenation and hydrosil-ylation of nitrous oxide homogeneously catalyzed by a metal complex. J Am Chem Soc 139:5720–5723. https://doi.org/10.1021/jacs.7b02124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen L, Song Y, Liu Y et al (2020) NiCoP nanoleaves array for electrocatalytic alkaline H2 evolution and overall water splitting. J Energy Chem 50:395–401. https://doi.org/10.1016/j.jechem.2020.03.046

    Article  Google Scholar 

  3. Li Q, Wang Y, Zeng J et al (2021) Phosphating-induced charge transfer on CoO/CoP interface for alkaline H2 evolution. Chin Chem Lett 32:3355–3258. https://doi.org/10.1016/j.cclet.2021.03.063

    Article  CAS  Google Scholar 

  4. Liu Y, Feng Q, Liu W et al (2018) Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 81:105641. https://doi.org/10.1016/j.nanoen.2020.105641

    Article  CAS  Google Scholar 

  5. Song C, Liu Y, Wang Y et al (2021) Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides. Sci China Mater 64:1662–1670. https://doi.org/10.1007/s40843-020-1566-6

    Article  CAS  Google Scholar 

  6. Wang M, Wang Z, Gong X et al (2014) The intensification technologies to water electrolysis for hydrogen production - A review. Renew Sustain Energy Rev 29:573–588. https://doi.org/10.1016/j.rser.2013.08.090

    Article  CAS  Google Scholar 

  7. Schüth F, Palkovits R, Schlögl R et al (2012) Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ Sci 5:6278–6289. https://doi.org/10.1039/C2EE02865D

    Article  Google Scholar 

  8. Lucentini I, Garcia X, Vendrell X et al (2021) Review of the decomposition of ammonia to generate hydrogen. Ind Eng Chem Res 60:18560–18611. https://doi.org/10.1021/acs.iecr.1c00843

    Article  CAS  Google Scholar 

  9. Huang C, Yu Y, Yang J et al (2019) Ru/La2O3 catalyst for ammonia decomposition to hydrogen. Appl Surf Sci 476:928–936. https://doi.org/10.1016/j.apsusc.2019.01.112

    Article  CAS  Google Scholar 

  10. Lucentini I, Casanovas A, Llorca J (2019) Catalytic ammonia decomposition for hydrogen production on Ni, Ru and Ni Ru supported on CeO2. Int J Hydrogen Energy 44:12693–12707. https://doi.org/10.1016/j.ijhydene.2019.01.154

    Article  CAS  Google Scholar 

  11. Zhao J, Xu S, Wu H et al (2019) Metal-support interactionson Ru/CaAlOx catalysts derived from structural reconstruction of Ca-Al layered double hydroxides for ammonia decomposition. Chem Commun 55:14410–14413. https://doi.org/10.1039/C9CC05706D

    Article  CAS  Google Scholar 

  12. Li L, Chen F, Shao J et al (2016) Attapulgite clay supported Ni nanoparticles encapsulated by porous silica: thermally stable catalysts for ammonia decomposition to COx free hydrogen. Int J Hydrogen Energy 41:21157–21165. https://doi.org/10.1016/j.ijhydene.2016.08.156

    Article  CAS  Google Scholar 

  13. Su Q, Gu L, Yao Y et al (2017) Layered double hydroxides derived Nix(MgyAlzOn) catalysts: enhanced ammonia decomposition by hydrogen spillover effect. Appl Catal B 201:451–460. https://doi.org/10.1016/j.apcatb.2016.08.051

    Article  CAS  Google Scholar 

  14. Okura K, Miyazaki K, Muroyama H et al (2018) Ammonia decomposition over Ni catalysts supported on perovskite-type oxides for the on-site generation of hydrogen. RSC Adv 8:32102–32110. https://doi.org/10.1039/C8RA06100A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hansgen DA, Vlachos DG, Chen JG (2010) Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat Chem 2:484–489. https://doi.org/10.1038/nchem.626

    Article  CAS  PubMed  Google Scholar 

  16. Gu Y, Ma Y, Long Z et al (2021) One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition. Int J Hydrogen Energy 46:4045–4054. https://doi.org/10.1016/j.ijhydene.2020.11.003

    Article  CAS  Google Scholar 

  17. Wu ZW, Li X, Qin YH et al (2020) Ammonia decomposition over SiO2-supported Ni-Co bimetallic catalyst for COx-free hydrogen generation. Int J Hydrogen Energy 45:15263–15269. https://doi.org/10.1016/j.ijhydene.2020.04.007

    Article  CAS  Google Scholar 

  18. Lucentini I, García Colli G, Luzi CD et al (2021) Catalytic ammonia decomposition over Ni-Ru supported on CeO2 for hydrogen production: effect of metal loading and kinetic analysis. Appl Catal B 286:119896. https://doi.org/10.1016/j.apcatb.2021.119896

    Article  CAS  Google Scholar 

  19. Li X, Ji W, Zhao J et al (2005) Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J Catal 236:181–189. https://doi.org/10.1016/j.jcat.2005.09.030

    Article  CAS  Google Scholar 

  20. Deng QF, Zhang H, Hou XX et al (2012) High-surface-area Ce0.8Zr0.2O2 solid solutions supported Ni catalysts for ammonia decomposition to hydrogen. Int J Hydrogen Energy 37:15901–15907. https://doi.org/10.1016/j.ijhydene.2012.08.069

    Article  CAS  Google Scholar 

  21. Zhang J, Xu H, Li W (2005) Kinetic study of NH3 decomposition over Ni nanoparticles: the role of La promoter, structure sensitivity and compensation effect. Appl Catal A 296:257–267. https://doi.org/10.1016/j.apcata.2005.08.046

    Article  CAS  Google Scholar 

  22. Bell TE, Torrente-Murciano L (2016) H2 production via ammonia decomposition using non-noble metal catalysts: a review. Top Catal 59:1438–1457. https://doi.org/10.1007/s11244-016-0653-4

    Article  CAS  Google Scholar 

  23. Öcal M, Oukaci R, Marcelin G et al (2000) Steady-state isotopic transient kinetic analysis on Pd-supported hexaaluminates used for methane combustion in the presence and absence of NO. Catal Today 59:205–217. https://doi.org/10.1016/S0920-5861(00)00284-4

    Article  Google Scholar 

  24. Groppi G, Cristiani C, Forzatti P (2001) Preparation, characterisation and catalytic activity of pure and substituted La-hexaaluminate systems for high temperature catalytic combustion. Appl Catal B 35:137–148. https://doi.org/10.1016/S0926-3373(01)00248-X

    Article  CAS  Google Scholar 

  25. Ihl Woo S, Kyu Kang S, Min Sohn J (1998) Effect of water content in the precursor solution on the catalytic property and stability of Sr0.8La0.2MnAl11O19 high-temperature combustion catalyst. Appl Catal B 18:317–324. https://doi.org/10.1016/S0926-3373(98)00052-6

    Article  CAS  Google Scholar 

  26. Torrez-Herrera JJ, Korili SA, Gil A (2021) Effect of the synthesis method on the morphology, textural properties and catalytic performance of La-hexaaluminates in the dry reforming of methane. J Environ Chem Eng 9:105298. https://doi.org/10.1016/j.jece.2021.105298

    Article  CAS  Google Scholar 

  27. Bohre A, Hočevar B, Grilc M et al (2019) Selective catalytic decarboxylation of biomass-derived carboxylic acids to bio-based methacrylic acid over hexaaluminate catalysts. Appl Catal B 256:117889. https://doi.org/10.1016/j.apcatb.2019.117889

    Article  CAS  Google Scholar 

  28. Chen F, Chi Y, Zhang H et al (2021) Band-gap shrinked NiO@Co3O4 nanotubes as high-performance supercapacitor electrodes. J Alloy Compd 888:161463. https://doi.org/10.1016/j.jallcom.2021.161463

    Article  CAS  Google Scholar 

  29. Ou Z, ZhangQin ZC et al (2021) Highly active and stable Ni/perovskite catalysts in steam methane reforming for hydrogen production. Sustainable Energy Fuels 5:1845–1856. https://doi.org/10.1039/D1SE00082A

    Article  CAS  Google Scholar 

  30. Gu YQ, Jin Z, Zhang H et al (2015) Transition metal nanoparticles dispersed in an alumina matrix as active and stable catalysts for COx-free hydrogen production from ammonia. J Mater Chem A 3:17172–17180. https://doi.org/10.1039/C5TA04179A

    Article  CAS  Google Scholar 

  31. Okura K, Okanishi T, Muroyama H et al (2015) Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst. Appl Catal A 505:77–85. https://doi.org/10.1016/j.apcata.2015.07.020

    Article  CAS  Google Scholar 

  32. Choudhary TV, Sivadinarayana C, Goodman DWJCL (2001) Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal Lett 72:197–201. https://doi.org/10.1023/A:1009023825549

    Article  CAS  Google Scholar 

  33. Kurtoğlu SF, Sarp S, Yılmaz Akkaya C et al (2018) COx-free hydrogen production from ammonia decomposition over sepiolite-supported nickel catalysts. Int J Hydrogen Energy 43:9954–9968. https://doi.org/10.1016/j.ijhydene.2018.04.057

    Article  CAS  Google Scholar 

  34. Meng T, Xu QQ, Li YT et al (2015) Nickle nanoparticles highly dispersed on reduced graphene oxide for ammonia decomposition to hydrogen. J Ind Eng Chem 32:373–379. https://doi.org/10.1016/j.jiec.2015.09.017

    Article  CAS  Google Scholar 

  35. Fu E, Qiu Y, Lu H et al (2021) Enhanced NH3 decomposition for H2 production over bimetallic M(M=Co, Fe, Cu)Ni/Al2O3. Fuel Process Technol 221:106945. https://doi.org/10.1016/j.fuproc.2021.106945

    Article  CAS  Google Scholar 

  36. Sato K, Abe N, Kawagoe T et al (2017) Supported Ni catalysts prepared from hydrotalcite-like compounds for the production of hydrogen by ammonia decomposition. Int J Hydrogen Energy 42:6610–6617. https://doi.org/10.1016/j.ijhydene.2016.11.150

    Article  CAS  Google Scholar 

  37. Nakamura I, Fujitani T (2016) Role of metal oxide supports in NH3 decomposition over Ni catalysts. Appl Catal A: Genera 524:45–49. https://doi.org/10.1016/j.apcata.2016.05.020

    Article  CAS  Google Scholar 

  38. Huang C, Li H, Yang J et al (2019) Ce0.6Zr0.3Y0.1O2 solid solutions-supported NiCo bimetal nanocatalysts for NH3 decomposition. Appl Surf Sci 478:708–716. https://doi.org/10.1016/j.apsusc.2019.01.269

    Article  CAS  Google Scholar 

  39. Hu ZP, Weng CC, Yuan GG et al (2018) Ni nanoparticles supported on mica for efficient decomposition of ammonia to COx-free hydrogen. Int J Hydrogen Energy 43:9663–9676. https://doi.org/10.1016/j.ijhydene.2018.04.029

    Article  CAS  Google Scholar 

  40. Hu ZP, Weng CC, Chen C et al (2018) Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: a comparative study of the preparation methods. Appl Catal A 562:49–57. https://doi.org/10.1016/j.apcata.2018.05.038

    Article  CAS  Google Scholar 

  41. Yin SF, Xu BQ, Zhou XP et al (2004) A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl Catal A 277:1–9. https://doi.org/10.1016/j.apcata.2004.09.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21878001, 22078002 and 22078027). Special thanks to the support from Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University (ACGM2016-06-02 and ACGM2016-06-03), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiping Lei or Fengxiang Yin.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1091 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Yu, X., Lei, Z. et al. Preparation of Lanthanum Hexaaluminate Supported Nickel Catalysts for Hydrogen Production by Ammonia Decomposition. Catal Lett 153, 3148–3158 (2023). https://doi.org/10.1007/s10562-022-04214-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04214-w

Keywords

Navigation