Skip to main content
Log in

Design of a Nanoscale Ni Catalyst for Debenzylation Reactions via Hydrogenative CN Bond Cleavage

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ni catalysts are commonly used for important transformations in organic chemistry. However, they frequently attend the employment as Ni complexes. Herein, we design an efficient and environmentally compatible nanoscale Ni catalyst for debenzylation reactions via hydrogenative C–N bond cleavage. The Ni nanoparticles (NPs) can be in situ generated by pure H2 reduction based on the precursor Ni–Al hydrotalcite-like compound. The Ni nanocatalysts were systematically characterized with various technique approaches including physical adsorption, XRD, Raman, H2-TPR, TEM, and SEM. Two types of Ni species can be detected, i.e., NiO and Ni0. The latter was supposed to be the active sites. The ultra-small and highly dispersed active Ni0 NPs with average diameters of 5 nm can be formed on the surface of the Ni–Al2O3–H2–78 catalyst. Then the complete conversion and high yield (> 90%) for hydrogenative C–N bond cleavage of some substrates (6 examples) can be achieved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang DY, Kawahata M, Yang ZK, Miyamoto K, Komagawa S, Yamaguchi K, Wang C, Uchiyama M (2016) Stille coupling via C–N bond cleavage. Nat Commun 7:12937–12945

    Article  PubMed  PubMed Central  Google Scholar 

  2. Walker JA Jr, Vickerman KL, Humke JN, Stanley LM (2017) Ni-catalyzed alkene carboacylation via amide C–N bond activation. J Am Chem Soc 139:10228–10231

    Article  CAS  PubMed  Google Scholar 

  3. Ouyang K, Hao W, Zhang WX, Xi Z (2015) Transition-metal-catalyzed cleavage of C–N single bonds. Chem Rev 115:12045–12090

    Article  CAS  PubMed  Google Scholar 

  4. Zhao W, Liu S, Wang H, Yang J, Chen X (2021) Ultrasmall Pd nanoparticles supported on TiO2 for catalytic debenzylation via hydrogenative C–N bond cleavage. ACS Appl Nano Mater 4:159–166

    Article  CAS  Google Scholar 

  5. Liu S, Ji F, Li X, Pan X, Chen S, Wang X, Zhang Y, Men Y (2019) Stick-like mesoporous titania loaded Pd as highly active and cost effective catalysts for hydrodebenzylation of hexabenzylhexaazaisowurtzitane (HBIW). Mol Catal 477:110556–110567

    Article  CAS  Google Scholar 

  6. Lou D, Wang H, Liu S, Li L, Zhao W, Chen X, Wang J, Li X, Wu P, Yang J (2018) PdFe bimetallic catalysts for debenzylation of hexabenzylhexaazaisowurtzitane (HBIW) and tetraacetyldibenzylhexaazaisowurtzitane (TADBIW). Catal Commun 109:28–32

    Article  CAS  Google Scholar 

  7. Zhang M, Liu S, Li L, Li X, Huang H, Yin J, Shao X, Yang J (2017) Effect of carbon supports on Pd catalyst for hydrogenation debenzylation of hexabenzylhexaazaisowurtzitane (HBIW). J Energ Mater 35:251–264

    Article  CAS  Google Scholar 

  8. Bailey PD, Beard MA, Dang HPT, Phillips TR, Price RA, Whittaker JH (2008) Debenzylation using catalytic hydrogenolysis in trifluoroethanol, and the total synthesis of (−)-raumacline. Tetrahedron Lett 49:2150–2153

    Article  CAS  Google Scholar 

  9. Zhou G, Zhang L, Xue Y, Li J (2019) Progress of N-benzyl removal, Chin. J Org Chem 39:2428–2442

    CAS  Google Scholar 

  10. Pandarus V, Beland F, Ciriminna R, Pagliaro M (2011) Selective debenzylation of benzyl protected groups with siliacat Pd(0) under mild conditions. ChemCatChem 3:1146–1150

    Article  CAS  Google Scholar 

  11. Mao Y, Liu Y, Hu Y, Wang L, Zhang S, Wang W (2018) Pd-catalyzed debenzylation and deallylation of ethers and esters with sodium hydride. ACS Catal 8:3016–3020

    Article  CAS  Google Scholar 

  12. Yakukhnov SA, Ananikov VP (2019) Catalytic transfer hydrodebenzylation with low palladium loading. Adv Synth Catal 361:4781–4789

    Article  CAS  Google Scholar 

  13. Moriyama K, Nakamura Y, Togo H (2014) Oxidative debenzylation of N-benzyl amides and O-benzyl ethers using alkali metal bromide. Org Lett 16:3812–3815

    Article  CAS  PubMed  Google Scholar 

  14. Ji H, Jing Q, Huang J, Silverman RB (2012) Acid-facilitated debenzylation of N-Boc, N-benzyl double protected 2-aminopyridinomethyl pyrrolidine derivatives. Tetrahedron 68:1359–1366

    Article  CAS  PubMed  Google Scholar 

  15. Graham TH (2015) Deprotection of N-benzylbenzimidazoles and N-benzylimidazoles with triethylsilane and Pd/C. Tetrahedron Lett 56:2688–2690

    Article  CAS  Google Scholar 

  16. Albano G, Evangelisti C, Aronica LA (2017) Hydrogenolysis of benzyl protected phenols and aniline promoted by supported palladium nanoparticles. Chem Sel 2:384–388

    CAS  Google Scholar 

  17. Yamamoto Y, Shimizu E, Ban K, Wada Y, Mizusaki T, Yoshimura M, Takagi Y, Sawama Y, Sajiki H (2020) Facile hydrogenative deprotection of N-benzyl groups using a mixed catalyst of palladium and niobic acid-on-carbon. ACS Omega 5:2699–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Groppo E, Agostini G, Piovano A, Muddada NB, Leofanti G, Pellegrini R, Portale G, Longo A, Lamberti C (2012) Effect of reduction in liquid phase on the properties and the catalytic activity of Pd/Al2O3 catalysts. J Catal 287:44–54

    Article  CAS  Google Scholar 

  19. Perosa A, Tundo P, Zinovyev S (2002) Mild catalytic multiphase hydrogenolysis of benzyl ethers. Green Chem 4:492–494

    Article  CAS  Google Scholar 

  20. Hu J, Sun H, Cai W, Pu X, Zhang Y, Shi Z (2016) Nickel-catalyzed borylation of aryl- and benzyltrimethylammonium salts via C–N bond cleavage. J Org Chem 81:14–24

    Article  CAS  PubMed  Google Scholar 

  21. Shi S, Szostak M (2016) Nickel-catalyzed diaryl ketone synthesis by N–C cleavage: direct Negishi cross-coupling of primary amides by site-selective N, N-Di-boc activation. Org Lett 18:5872–5875

    Article  CAS  PubMed  Google Scholar 

  22. Nagae H, Xia J, Kirillov E, Higashida K, Shoji K, Boiteau V, Zhang W, Carpentier JF, Mashima K (2020) Asymmetric allylic alkylation of β-ketoesters via C–N bond cleavage of N-allyl-N-methylaniline derivatives catalyzed by a nickel–diphosphine system. ACS Catal 10:5828–5839

    Article  CAS  Google Scholar 

  23. Ritleng V, Henrion M, Chetcuti MJ (2016) Nickel N-heterocyclic carbene-catalyzed C-heteroatom bond formation, reduction, and oxidation: reactions and mechanistic aspects. ACS Catal 6:890–906

    Article  CAS  Google Scholar 

  24. Roy D, Sarkar S, Laha RM, Pramanik N, Maiti DK (2015) Ni(0)-Cu(I): a powerful combo catalyst for simultaneous coupling and cleavage of the C–N bond with cyclization to valuable amide-based pyrroles and 4-pyridones. RSC Adv 5:73346–73351

    Article  CAS  Google Scholar 

  25. Yang ZK, Xu NX, Takita R, Muranaka A, Wang C, Uchiyama M (2018) Cross-coupling polycondensation via C–O or C–N bond cleavage. Nat Commun 9:1587–1593

    Article  PubMed  PubMed Central  Google Scholar 

  26. Han H, Park S, Jang D, Kim WB (2021) N-doped carbon nanoweb-supported Ni/NiO heterostructure as hybrid catalysts for hydrogen evolution reaction in an alkaline phase. J Alloys Compd 853:157338–157344

    Article  CAS  Google Scholar 

  27. Ye X, An Y, Xu G (2011) Kinetics of 9-ethylcarbazole hydrogenation over Raney-Ni catalyst for hydrogen storage. J Alloys Compd 509:152–156

    Article  CAS  Google Scholar 

  28. Chen C, Wu D, Liu P, Xia H, Zhou M, Hou X, Jiang J (2021) Efficient Ni-based catalysts for the hydrotreatment of lignin dimer model compounds to cycloalkanes/cycloalkanols. React Chem Eng 6:559–571

    Article  CAS  Google Scholar 

  29. Lange S, Formenti D, Lund H, Kreyenschulte C, Agostini G, Bartling S, Bachmann S, Scalone M, Junge K, Beller M (2019) Additive-free nickel-catalyzed debenzylation reactions via hydrogenative C–O and C–N bond cleavage. ACS Sustain Chem Eng 7:17107–17113

    Article  CAS  Google Scholar 

  30. He L, Huang Y, Wang A, Wang X, Chen X, Jose Delgado J, Zhang T (2012) A noble-metal-free catalyst derived from Ni-Al hydrotalcite for hydrogen generation from N2H4 center dot H2O decomposition. Angew Chem Int Edit 51:6191–6194

    Article  CAS  Google Scholar 

  31. Dong J, Zhu T, Li H, Sun H, Wang Y, Niu L, Wen X, Bai G (2019) Biotemplate-assisted synthesis of layered double oxides confining ultrafine Ni nanoparticles as a stable catalyst for phenol hydrogenation. Ind Eng Chem Res 58:14688–14694

    Article  CAS  Google Scholar 

  32. Bravo-Suárez JJ, Páez-Mozo EA, Oyama ST (2004) Review of the synthesis of layered double hydroxides: a thermodynamic approach. Quim Nova 27:601–614

    Article  Google Scholar 

  33. Fu X, Cook JM (1993) General approach for the synthesis of ajmaline-related alkaloids. Enantiospecific total synthesis of (-)-suaveoline, (-)-raumacline, and (-)-Nb-methylraumacline. J Org Chem 58:661–672

    Article  CAS  Google Scholar 

  34. Samudrala PS, Nakhate AV, Gupta SSR, Rasal KB, Deshmukh GP, Gadipelly CR, Theegala S, Dumbre DK, Periasamy S, Komandur VRC, Bhargava SK, Mannepalli LK (2019) Oxidative coupling of carboxylic acids or benzaldehydes with DMF using hydrotalicite-derived oxide catalysts. Appl Catal B 240:348–357

    Article  CAS  Google Scholar 

  35. Chen H, He S, Xu M, Wei M, Eyans DG, Duan X (2017) Promoted synergic catalysis between metal Ni and acid-base sites toward oxidant-free dehydrogenation of alcohols. ACS Catal 7:2735–2743

    Article  CAS  Google Scholar 

  36. Zhu H, Dong H, Laveille P, Saih Y, Caps V, Basset JM (2014) Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catal Today 228:58–64

    Article  CAS  Google Scholar 

  37. Chen H, Zhang T, Qian C, Chen X (2010) A novel method for N-alkylation of aliphatic amines with ethers over gamma-Al2O3. Chem Pap 64:537–540

    Article  CAS  Google Scholar 

  38. Streng ES, Lee DS, George MW, Poliakoff M (2017) Continuous N-alkylation reactions of amino alcohols using gamma-Al2O3 and supercritical CO2: unexpected formation of cyclic ureas and urethanes by reaction with CO2. Beilstein J Org Chem 13:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimizu K, Imaiida N, Kon K, Siddiki SMAH, Satsuma A (2013) Heterogeneous Ni catalysts for N-alkylation of amines with alcohols. ACS Catal 3:998–1005

    Article  CAS  Google Scholar 

  40. Charvieux A, Le Moigne L, Borrego LG, Duguet N, Metay E (2019) Solvent-free N-alkylation of amides with alcohols catalyzed by nickel on silica-alumina. Eur J Inorg Chem 2019:6842–6846

    Article  CAS  Google Scholar 

  41. Phuoc Hoang H, de Luna GS, Ospitali F, Fornasari G, Vaccari A, Benito P (2020) Open-cell foams coated by Ni/X/Al hydrotalcite-type derived catalysts (X = Ce, La, Y) for CO2 methanation. J CO2 Util. https://doi.org/10.1016/j.jcou.2020.101327

    Article  Google Scholar 

  42. Zhou F, Pan N, Chen H, Xu X, Wang C, Du Y, Guo Y, Zeng Z, Li L (2019) Hydrogen production through steam reforming of toluene over Ce, Zr or Fe promoted Ni–Mg-Al hydrotalcite-derived catalysts at low temperature, Energ Convers. Manage 196:677–687

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant No. 21503264), a key deployment project from Chinese academy of sciences, the Talent Program of Shanghai University of Engineering Science, Science and Technology Commission of Shanghai Municipality (Grant No. 18030501100).

Funding

National Natural Science Foundation of China, 21503264

Author information

Authors and Affiliations

Authors

Contributions

SL: Project administration, Conceptualization, Methodology, Supervision, Formal analysis, Writing-original draft, Writing-review & editing. WZ: Data curation, Investigation, Visualization. ZT: Investigation, Visualization, Validation. LZ: Data curation. KG: Validation. HW: Validation. YM: Conceptualization, Formal analysis. JY: Funding acquisition. JD: Validation.

Corresponding authors

Correspondence to Shuang Liu or Jun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhao, W., Tang, Z. et al. Design of a Nanoscale Ni Catalyst for Debenzylation Reactions via Hydrogenative CN Bond Cleavage. Catal Lett 153, 3031–3043 (2023). https://doi.org/10.1007/s10562-022-04196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04196-9

Keywords

Navigation