Skip to main content
Log in

Photocatalytic Selective Oxidation of Toluene into Benzaldehyde on Mixed-Valence Vanadium Oxide V6O13 Catalyst with Density Functional Theory

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The photocatalytic oxidation of toluene to benzaldehyde has attracted wide attention due to its mild condition, low cost and green process. In general, the traditional semiconductor photocatalytic mechanism is an oxidation–reduction reaction between photogenerated carriers and reactants. Recently, the catalyst V6O13 shows the high photocatalytic activity because of the different photocatalytic mechanism from the oxidation–reduction reaction. The catalyst V6O13 and aliphatic alcohol would form V6O13–alkoxide, which could be excited by visible light to effectively activate the C–H bond of α–C. However, it is unknown whether the catalyst V6O13 could efficiently achieve photocatalytic oxidation of toluene and there is a similar photocatalytic mechanism for toluene by catalyst V6O13. In this work, the photocatalytic selective oxidation of toluene to benzaldehyde by V6O13 catalyst is systematically investigated by density functional theory. The results show that V6O13 catalyst can effectively activate toluene C(sp3)–H bond into benzyl with the activation energy is 14.2 kcal mol−1. The V6O13–toluene complex has stronger light absorption in the range from 200 to 800 nm than that of the individual V6O13 clusters. Furthermore, the barrier for the dehydration of C6H5CH2OOH and C6H5CHOHOH decreased from 49.0 to 35.0 kcal mol−1 and from 26.3 to 19.5 kcal mol−1, respectively. We trace these surprising results to the novel photocatalytic mechanism that the V6O13–toluene complex could be excited by light to effectively activate the toluene C(sp3)–H bond. Our work may provides new opportunities and challenges for photocatalytic field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Bie C, Zhu B, Xu F, Zhang L, Yu J (2019) Adv Mater 31:1902868

    Article  CAS  Google Scholar 

  2. Wang H, Raziq F, Qu Y, Qin C, Wang J, Jing L (2015) RSC Adv 5:85061–85064

    Article  CAS  Google Scholar 

  3. Liang J, Li L (2017) J Mater Chem A 5:10998–11008

    Article  CAS  Google Scholar 

  4. Shin SR, Park JH, Kim K-H, Choi KM, Kang JK (2016) Chem Mater 28:7725–7730

    Article  CAS  Google Scholar 

  5. Mou Z, Wu Y, Sun J, Yang P, Du Y, Lu C (2014) ACS Appl Mater Interfaces 6:13798–13806

    Article  CAS  PubMed  Google Scholar 

  6. Tang Z-R, Zhang Y, Zhang N, Xu Y-J (2015) Nanoscale 7:7030–7034

    Article  CAS  PubMed  Google Scholar 

  7. Zhang LL, Xiong Z, Zhao XS (2010) ACS Nano 4:7030–7036

    Article  CAS  PubMed  Google Scholar 

  8. Dai C, Liu B (2020) Energy Environ Sci 13:24–52

    Article  CAS  Google Scholar 

  9. Friedmann D, Hakki A, Kim H, Choi W, Bahnemann D (2016) Green Chem 18:5391–5411

    Article  CAS  Google Scholar 

  10. Lang X, Chen X, Zhao J (2014) Chem Soc Rev 43:473–486

    Article  CAS  PubMed  Google Scholar 

  11. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed 52:7372–7408

    Article  CAS  Google Scholar 

  12. Lu H, Zhao J, Li L, Gong L, Zheng J, Zhang L, Wang Z, Zhang J, Zhu Z (2011) Energy Environ Sci 4:3384

    Article  CAS  Google Scholar 

  13. Fagnoni M, Dondi D, Ravelli D, Albini A (2007) Chem Rev 107:2725–2756

    Article  CAS  PubMed  Google Scholar 

  14. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Chem Rev 114:9987–10043

    Article  CAS  PubMed  Google Scholar 

  15. Song L-N, Ding F, Yang Y-K, Ding D, Chen L, Au C-T, Yin S-F (2018) ACS Sustain Chem Eng 6:17044–17050

    Article  CAS  Google Scholar 

  16. Lei J, Su LB, Zeng K, Chen TQ, Qiu RH, Zhou YB, Au CT, Yin S-F (2017) Chem Eng Sci 171:404–425

    Article  CAS  Google Scholar 

  17. Liang Y-F, Jiao N (2017) Acc Chem Res 50:1640–1653

    Article  CAS  PubMed  Google Scholar 

  18. Cao X, Han T, Peng Q, Chen C, Li Y (2020) Chem Commun 56:13918–13932

    Article  CAS  Google Scholar 

  19. Sterckx H, Morel B, Maes BUW (2019) Angew Chem Int Ed 58:7946–7970

    Article  CAS  Google Scholar 

  20. Bie C, Yu H, Cheng B, Ho W, Fan J, Yu J (2021) Adv Mater 33:2003521

    Article  CAS  Google Scholar 

  21. Meng A, Zhang L, Cheng B, Yu J (2019) Adv Mater 31:1807660

    Article  Google Scholar 

  22. Hao H, Zhang L, Wang W, Zeng S (2018) Catal Sci Technol 8:1229–1250

    Article  CAS  Google Scholar 

  23. Li C-J, Xu G-R, Zhang B, Gong JR (2012) Appl Catal B-Environ 115:201–208

    Article  Google Scholar 

  24. Bai H, Yi W, Li J, Xi G, Li Y, Yang H, Liu J (2016) J Mater Chem A 4:1566–1571

    Article  CAS  Google Scholar 

  25. Tripathy J, Lee K, Schmuki P (2014) Angew Chem-Int Edit 53:12605–12608

    Article  CAS  Google Scholar 

  26. Liu Y, Chen L, Yuan Q, He J, Au C-T, Yin S-F (2016) Chem Commun 52:1274–1277

    Article  CAS  Google Scholar 

  27. Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2012) Chem Sci 3:2812–2822

    Article  CAS  Google Scholar 

  28. Li X-H, Chen J-S, Wang X, Sun J, Antonietti M (2011) J Am Chem Soc 133:8074–8077

    Article  CAS  PubMed  Google Scholar 

  29. Zavahir S, Xiao Q, Sarina S, Zhao J, Bottle S, Wellard M, Jia J, Jing L, Huang Y, Blinco JP, Wu H, Zhu H-Y (2016) ACS Catal 6:3580–3588

    Article  CAS  Google Scholar 

  30. Mironov OA, Bischof SM, Konnick MM, Hashiguchi BG, Ziatdinov VR, Goddard WA, Ahlquist M, Periana RA (2013) J Am Chem Soc 135:14644–14658

    Article  CAS  PubMed  Google Scholar 

  31. Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M (2017) Nature 551:605–608

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Li G-D, Yan C, Mu X-Y, Pan X-L, Zou X-X, Wang K-X, Chen J-S (2011) Angew Chem Int Ed 50:8299–8303

    Article  CAS  Google Scholar 

  33. Coperet C (2010) Chem Rev 110:656–680

    Article  CAS  PubMed  Google Scholar 

  34. Frisch GWTMJ, Schlegel HB, Scuseria GE, Robb JRCMA, Scalmani G, Barone V, Mennucci B, Petersson HNGA, Caricato M, Li X, Hratchian HP, Izmaylov JBAF, Zheng G, Sonnenberg JL, Hada M, Ehara KTM, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda OKY, Nakai H, Vreven T, Montgomery Jr JA, Peralta FOJE, Bearpark M, Heyd JJ, Brothers E, Kudin VN SKN, Keith T, Kobayashi R, Normand J, Raghavachari ARK, Burant JC, Iyengar SS, Tomasi J, Cossi NRM, Millam JM, Klene M, Knox JE, Cross JB, Bakken CAV, Jaramillo J, Gomperts R, Stratmann RE, Yazyev AJAO, Cammi R, Pomelli C, Ochterski JW, Martin KMRL, Zakrzewski VG, Voth GA, Salvador JJDP, Dapprich S, Daniels AD, Farkas JBFO, Cioslowski JV, Fox ADJ Gaussian 09 Revision D01 Gaussian Inc Wallingford CT (2013)

  35. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  38. Ho J, Klamt A, Coote ML (2010) J Phys Chem A 114:13442–13444

    Article  CAS  PubMed  Google Scholar 

  39. Huang X, Gan HL, Peng L, Gu FL (2016) Chem J Chin U 37:297–305

    CAS  Google Scholar 

  40. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2011) J Phys Chem B 115:14556–14562

    Article  CAS  PubMed  Google Scholar 

  41. van Gisbergen SJA, Snijders JG, Baerends EJ (1999) Comput Phys Commun 118:119–138

    Article  Google Scholar 

  42. Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845–856

    Article  CAS  PubMed  Google Scholar 

  43. Lu T, Chen FW (2012) J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  44. da Silva G, Hamdan MR, Bozzelli JW (2009) J Chem Theory Comput 5:3185–3194

    Article  PubMed  Google Scholar 

  45. Zhao L, Zhang B, Xiao X, Gu FL, Zhang R-Q (2016) J Mol Catal A Chem 420:82–87

    Article  CAS  Google Scholar 

  46. Kelly CP, Cramer CJ, Truhlar DG (2007) J Phys Chem B 111:408–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fifen JJ, Dhaouadi Z, Nsangou M (2014) J Phys Chem A 118:11090–11097

    Article  CAS  PubMed  Google Scholar 

  48. Teramura K, Ohuchi T, Shishido T, Tanaka T (2009) J Phys Chem C 113:17018–17024

    Article  CAS  Google Scholar 

  49. Monfort O, Petriskova P (2021) Processes 9:214

    Article  CAS  Google Scholar 

  50. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  51. Ma J, Yu J, Chen W, Zeng A (2016) Catal Lett 146:1600–1610

    Article  CAS  Google Scholar 

  52. Yang D, Wu T, Chen C, Guo W, Liu H, Han B (2017) Green Chem 19:311–318

    Article  CAS  Google Scholar 

  53. Parrino F, Bellardita M, García-López EI, Marcì G, Loddo V, Palmisano L (2018) ACS Catal 8:11191–11225

    Article  CAS  Google Scholar 

  54. Xu N, Ma X, Wang M, Qian T, Liang J, Yang W, Wang Y, Hu J, Yan C (2016) Electrochim Acta 203:171–177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Changsha Supercomputer Center for computation. This work was supported by the National Natural Science Foundation of China (Nos. 51972103, 21938002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang-Feng Yin or Meng-Qiu Cai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1391 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YL., Ding, YF., Yin, SF. et al. Photocatalytic Selective Oxidation of Toluene into Benzaldehyde on Mixed-Valence Vanadium Oxide V6O13 Catalyst with Density Functional Theory. Catal Lett 153, 2917–2926 (2023). https://doi.org/10.1007/s10562-022-04184-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04184-z

Keywords

Navigation