Skip to main content
Log in

Promoter Effect of MAl2O4 (M = Co and Ni) Aluminates in the Performance of Pt/Al2O3 Catalyst for CO-PROX Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, the catalytic performance of Pt on alumina catalyst modified by adding MAl2O3 (Co and Ni) aluminates promoter has been tested for the preferential oxidation of CO in a H2-rich stream (CO-PROX). Activity and selectivity were superior compared to those of a reference Pt/alumina system, which requires higher temperatures (above 150 °C) to operate at reasonable rates. For all the modified catalysts, the maximum conversion occurs at 150 °C, a value within the acceptable working range for this process. Characterizations results indicate that the presence of aluminates oxides facilitated the electron transfer from Pt to promotes (caused by Pt and MAl2O4 close contact), resulting in the decrease of CO adsorption strength and the enhancement of low-temperature activity. The modified catalysts followed the dual-site Langmuir–Hinshelwood mechanism with CO preferentially adsorbing at the Pt sites and O2 adsorbing at the aluminates sites. Also, the excellent stability presented by modified catalysts after 30 h on stream at 200 °C demonstrates their high potential for practical CO-PROX applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chagas CA, Toniolo FS, Magalhães RNSH, Schmal M (2012) Alumina-supported LaCoO3 perovskite for selective CO oxidation (SELOX). Int J Hydrogen Energy 37:5022–5031. https://doi.org/10.1016/j.ijhydene.2011.12.052

    Article  CAS  Google Scholar 

  2. Chagas CA, De Souza EF, De Carvalho MCNA et al (2016) Cobalt ferrite nanoparticles for the preferential oxidation of CO. Appl Catal A 519:139–145. https://doi.org/10.1016/j.apcata.2016.03.024

    Article  CAS  Google Scholar 

  3. Chagas CA, de Souza EF, Manfro RL et al (2016) Copper as promoter of the NiO-CeO2 catalyst in the preferential CO oxidation. Appl Catal B 182:257–265. https://doi.org/10.1016/j.apcatb.2015.09.033

    Article  CAS  Google Scholar 

  4. Chagas CA, Magalhães RNSH, Schmal M (2020) The LaCo1−xVxO3 catalyst for CO oxidation in Rich H2 stream. Catal Lett. https://doi.org/10.1007/s10562-020-03303-y

    Article  Google Scholar 

  5. Jain SK, Crabb EM, Smart LE et al (2009) Controlled modification of Pt/Al2O3 for the preferential oxidation of CO in hydrogen: A comparative study of modifying element. Appl Catal B 89:349–355. https://doi.org/10.1016/j.apcatb.2008.12.013

    Article  CAS  Google Scholar 

  6. Magalhães RNSH, Toniolo FS, Da Silva VT, Schmal M (2010) Selective CO oxidation reaction (SELOX) over cerium-doped LaCoO3 perovskite catalysts. Appl Catal A 388:216–224. https://doi.org/10.1016/j.apcata.2010.08.052

    Article  CAS  Google Scholar 

  7. Liu X, Korotkikh O, Farrauto R (2002) Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/alumina catalyst. Appl Catal A 226:293–303. https://doi.org/10.1016/S0926-860X(01)00915-2

    Article  CAS  Google Scholar 

  8. Brown ML, Green JAW (1963) U.S. Patent 3 088 919

  9. Brown ML, Green AW (1960) selective oxidation of carbon monoxide. Ind Eng Chem 52:841–844

    Article  CAS  Google Scholar 

  10. Nuñez NE, Bideberripe HP, Mizrahi M et al (2016) CO selective oxidation using co-promoted Pt/γ-Al2O3 catalysts. Int J Hydrogen Energy 41:19005–19013. https://doi.org/10.1016/j.ijhydene.2016.08.170

    Article  CAS  Google Scholar 

  11. Korotkikh O, Farrauto R (2000) Selective catalytic oxidation of CO in H2: Fuel cell applications. Catal Today 62:249–254. https://doi.org/10.1016/S0920-5861(00)00426-0

    Article  CAS  Google Scholar 

  12. Ayastuy JL, González-Marcos MP, Gutiérrez-Ortiz MA (2011) Promotion effect of Sn in alumina-supported Pt catalysts for CO-PROX. Catal Commun 12:895–900. https://doi.org/10.1016/j.catcom.2011.02.011

    Article  CAS  Google Scholar 

  13. Newton MA, Ferri D, Smolentsev G et al (2015) Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates. Nat Commun 6:1–7. https://doi.org/10.1038/ncomms9675

    Article  CAS  Google Scholar 

  14. Liu K, Wang A, Zhang T (2012) Recent advances in preferential oxidation of co reaction over platinum group metal catalysts. ACS Catal 2:1165–1178. https://doi.org/10.1021/cs200418w

    Article  CAS  Google Scholar 

  15. Manasilp A, Gulari E (2002) Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl Catal B 37:17–25. https://doi.org/10.1016/S0926-3373(01)00319-8

    Article  CAS  Google Scholar 

  16. Kumar J, Deo G, Kunzru D (2016) Preferential oxidation of carbon monoxide on Pt/γ-Al2O3 catalyst: effect of adding ceria and nickel. Int J Hydrogen Energy 41:18494–18501. https://doi.org/10.1016/j.ijhydene.2016.08.109

    Article  CAS  Google Scholar 

  17. Ayastuy JL, González-Marcos MP, González-Velasco JR, Gutiérrez-Ortiz MA (2007) MnOx/Pt/Al2O3 catalysts for CO oxidation in H2-rich streams. Appl Catal B 70:532–541. https://doi.org/10.1016/j.apcatb.2006.01.028

    Article  CAS  Google Scholar 

  18. Mergler YJ, Van Aalst A, Van Delft J, Nieuwenhuys BE (1996) CO oxidation over promoted Pt catalysts. Appl Catal B 10:245–261. https://doi.org/10.1016/S0926-3373(96)00017-3

    Article  CAS  Google Scholar 

  19. Navas-Cárdenas C, Benito N, Wolf EE, Gracia F (2019) Effect of Pt-MOx (M = Fe, Co) interaction on the preferential oxidation of CO over Pt/MOx/TiO2 catalysts prepared by selective electrostatic adsorption. Appl Catal A 576:11–19. https://doi.org/10.1016/j.apcata.2019.02.030

    Article  CAS  Google Scholar 

  20. Tomita A, Shimizu K, Tai Y (2014) Effect of metal oxide promoters on low temperature CO oxidation over water-pretreated Pt/Alumina catalysts. Catal Lett 144:1689–1695. https://doi.org/10.1007/s10562-014-1305-6

    Article  CAS  Google Scholar 

  21. Qin H, Qian X, Meng T et al (2015) Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 catalysts for CO oxidation. Catalysts 5:606–633. https://doi.org/10.3390/catal5020606

    Article  CAS  Google Scholar 

  22. Paz DS, Damyanova S, Borges LR et al (2017) Identifying the adsorbed active intermediates on Pt surface and promotion of activity through the redox CeO2 in preferential oxidation of CO in H2. Appl Catal A 548:164–178. https://doi.org/10.1016/j.apcata.2017.08.012

    Article  CAS  Google Scholar 

  23. Gibson EK, Crabb EM, Gianolio D et al (2017) Understanding the role of promoters in catalysis: operando XAFS/DRIFTS study of CeOx/Pt/Al2O3 during CO oxidation. Catalysis, Structure and Reactivity 3:5–12. https://doi.org/10.1080/2055074X.2017.1278890

    Article  CAS  Google Scholar 

  24. Suh DJ, Kwak C, Kim JH et al (2005) Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts. J Power Sources 142:70–74. https://doi.org/10.1016/j.jpowsour.2004.09.012

    Article  CAS  Google Scholar 

  25. Gómez LE, Sollier BM, Lacoste AM et al (2019) Hydrogen purification for fuel cells through CO preferential oxidation using PtCu/Al2O3 structured catalysts. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103376

    Article  Google Scholar 

  26. Nguyen TS, Morfin F, Aouine M et al (2015) Trends in the CO oxidation and PROX performances of the platinum-group metals supported on ceria. Catal Today 253:106–114. https://doi.org/10.1016/j.cattod.2014.12.038

    Article  CAS  Google Scholar 

  27. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  28. Gao Z, Cui L, Ma H (2016) Selective methanation of CO over Ni/Al2O3 catalyst: Effects of preparation method and Ru addition. Int J Hydrogen Energy 41:5484–5493. https://doi.org/10.1016/j.ijhydene.2016.02.085

    Article  CAS  Google Scholar 

  29. Kiš E, Marinković-Nedučin R, Lomić G et al (1998) Structural and textural properties of the NiO-Al2O3 catalyst. Polyhedron 17:27–34. https://doi.org/10.1016/S0277-5387(97)00263-5

    Article  Google Scholar 

  30. Sengupta S, Ray K, Deo G (2014) Effects of modifying Ni/Al2O3 catalyst with cobalt on the reforming of CH4 with CO2 and cracking of CH4 reactions. Int J Hydrogen Energy 39:11462–11472. https://doi.org/10.1016/j.ijhydene.2014.05.058

    Article  CAS  Google Scholar 

  31. Gonçalves AAS, Costa MJF, Zhang L et al (2018) One-pot synthesis of MeAl2O4 (Me = Ni Co, or Cu) supported on γ-Al2O3 with ultralarge mesopores: enhancing interfacial defects in γ-Al2O3 to facilitate the formation of spinel structures at lower temperatures. Chem Mater 30:436–446. https://doi.org/10.1021/acs.chemmater.7b04353

    Article  CAS  Google Scholar 

  32. Adans YF, Ballarini AD, Martins AR et al (2017) Performance of nickel supported on Γ-alumina obtained by aluminum recycling for methane dry reforming. Catal Lett 147:2057–2066. https://doi.org/10.1007/s10562-017-2088-3

    Article  CAS  Google Scholar 

  33. Morterra C, Magnacca G (1996) A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today 27:497–532. https://doi.org/10.1016/0920-5861(95)00163-8

    Article  CAS  Google Scholar 

  34. Busca G, Lorenzelli V, Escribanot VS (1992) Chemistry of high surface area NixA12-2x03-2x mixed oxides. Chem Mater 2:595–605

    Article  Google Scholar 

  35. Asencios YJO, Elias KFM, Assaf EM (2014) Oxidative-reforming of model biogas over NiO/Al2O3 catalysts: the influence of the variation of support synthesis conditions. Appl Surf Sci 317:350–359. https://doi.org/10.1016/j.apsusc.2014.08.058

    Article  CAS  Google Scholar 

  36. Olsson L (2002) The Influence of Pt oxide formation and Pt dispersion on the reactions NO2⇔NO+1/2O2 over Pt/Al2O3 and Pt/BaO/Al2O3. J Catal 210:340–353. https://doi.org/10.1006/jcat.2002.3698

    Article  CAS  Google Scholar 

  37. Navarro RM, Álvarez-Galván MC, Sánchez-Sánchez MC et al (2005) Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Appl Catal B 55:229–241. https://doi.org/10.1016/j.apcatb.2004.09.002

    Article  CAS  Google Scholar 

  38. Wang P, Yi J, Sun C et al (2019) Evaluation of H2 influence on the evolution mechanism of nox storage and reduction over Pt–Ba–Ce/γ-Al2O3 Catalysts. Engineering 5:568–575. https://doi.org/10.1016/j.eng.2019.02.005

    Article  CAS  Google Scholar 

  39. Riguetto BA, Damyanova S, Gouliev G et al (2004) Surface behavior of alumina-supported Pt catalysts modified with cerium as revealed by X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy of CO adsorption. J Phys Chem B 108:5349–5358. https://doi.org/10.1021/jp031167s

    Article  CAS  Google Scholar 

  40. Serrano-Ruiz JC, Huber GW, Sánchez-Castillo MA et al (2006) Effect of Sn addition to Pt/CeO2-Al2O3 and Pt/Al2O3 catalysts: An XPS, 119Sn Mössbauer and microcalorimetry study. J Catal 241:378–388. https://doi.org/10.1016/j.jcat.2006.05.005

    Article  CAS  Google Scholar 

  41. Duan X, Pan M, Yu F, Yuan D (2011) Synthesis, structure and optical properties of CoAl2O4 spinel nanocrystals. J Alloy Compd 509:1079–1083. https://doi.org/10.1016/j.jallcom.2010.09.199

    Article  CAS  Google Scholar 

  42. Dosso LA, Vera CR, Grau JM (2017) Aqueous phase reforming of polyols from glucose degradation by reaction over Pt/alumina catalysts modified by Ni or Co. Int J Hydrogen Energy 42:18853–18864. https://doi.org/10.1016/j.ijhydene.2017.06.100

    Article  CAS  Google Scholar 

  43. Corro G, Torralba R, Pal U et al (2019) Total oxidation of methane over Pt/Cr2O3 catalyst at low temperature: effect of Pt0 -Ptx+ dipoles at the metal-support interface. J Phys Chem C 123:2882–2893. https://doi.org/10.1021/acs.jpcc.8b09748

    Article  CAS  Google Scholar 

  44. Huang T, Peng Q, Shi W et al (2018) An anionic surfactant-assisted equilibrium adsorption method to prepare highly dispersed Fe-promoted Ni/Al2O3 catalysts for highly selective mercaptan removal. Appl Catal B 230:154–164. https://doi.org/10.1016/j.apcatb.2018.02.053

    Article  CAS  Google Scholar 

  45. Farahani MD, Dasireddy VDBC, Friedrich HB (2018) Oxidative dehydrogenation of n-octane over niobium-doped NiAl2O4: an example of beneficial coking in catalysis over spinel. ChemCatChem 10:2059–2069. https://doi.org/10.1002/cctc.201701940

    Article  CAS  Google Scholar 

  46. Peck MA, Langell MA (2012) Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem Mater 24:4483–4490. https://doi.org/10.1021/cm300739y

    Article  CAS  Google Scholar 

  47. Xu L, Zhao H, Song H, Chou L (2012) Ordered mesoporous alumina supported nickel based catalysts for carbon dioxide reforming of methane. Int J Hydrogen Energy 37:7497–7511. https://doi.org/10.1016/j.ijhydene.2012.01.105

    Article  CAS  Google Scholar 

  48. Jime C, Boukha Z, De RB et al (2014) Behavior of Coprecipitated NiAl2O4/Al2O3 Catalysts for Low- Temperature Methane Steam Reforming. Energy Fuels 28(11):7109–7121

    Article  Google Scholar 

  49. Velon A, Olefjord I (2001) Oxidation behavior of Ni3Al and Fe3Al: I. XPS calibrations of pure compounds and quantification of the results. Oxid Met 56:415–424. https://doi.org/10.1023/a:1012589315800

    Article  CAS  Google Scholar 

  50. Sl J, Zí Ol J, Grzybowska B et al (1999) Oxidative dehydrogenation of propane on NixMg1−xAl2O4 and NiCr2O4 spinels the NixMg1−xAl2O4, NiCr2O4, and MgCr2O4 spinels have. J Catal 187:410–418

    Article  Google Scholar 

  51. Akika FZ, Benamira M, Lahmar H et al (2018) Structural and optical properties of Cu-substitution of NiAl2O4 and their photocatalytic activity towards Congo red under solar light irradiation. J Photochem Photobiol, A 364:542–550. https://doi.org/10.1016/j.jphotochem.2018.06.049

    Article  CAS  Google Scholar 

  52. Peuckert M, Bonzel HP (1984) Characterization of oxidized platinum surfaces by X-ray photoelectron spectroscopy. Surf Sci 145:239–259. https://doi.org/10.1016/0039-6028(84)90778-7

    Article  CAS  Google Scholar 

  53. Srisawad N, Chaitree W, Mekasuwandumrong O et al (2012) Formation of CoAl2O4 nanoparticles via low-temperature solid-state reaction of fine gibbsite and cobalt precursor. J Nanomater. https://doi.org/10.1155/2012/108369

    Article  Google Scholar 

  54. Xiong H, Zhang Y, Liew K, Li J (2005) Catalytic performance of zirconium-modified Co/Al2O3 for Fischer-Tropsch synthesis. J Mol Catal A: Chem 231:145–151. https://doi.org/10.1016/j.molcata.2004.12.033

    Article  CAS  Google Scholar 

  55. Han JK, Jia LT, Hou B et al (2015) Catalytic properties of CoAl2O4/Al2O3 supported cobalt catalysts for Fischer-Tropsch synthesis. J Fuel Chem Technol 43:846–851. https://doi.org/10.1016/s1872-5813(15)30025-6

    Article  CAS  Google Scholar 

  56. Horiuchi H, Shishido T, Saitow A et al (2001) Perovskite-type BaXO3: its structural control by selection of ionic radius of X. Mater Sci Eng, A 312:237–243. https://doi.org/10.1016/S0921-5093(00)01893-1

    Article  Google Scholar 

  57. Jongsomjit B, Panpranot J, Goodwin JG (2001) Co-support compound formation in alumina-supported cobalt catalysts. J Catal 204:98–109. https://doi.org/10.1006/jcat.2001.3387

    Article  CAS  Google Scholar 

  58. Rojanapipatkul S, Jongsomjit B (2008) Synthesis of cobalt on cobalt-aluminate via solvothermal method and its catalytic properties for carbon monoxide hydrogenation. Catal Commun 10:232–236. https://doi.org/10.1016/j.catcom.2008.08.026

    Article  CAS  Google Scholar 

  59. Mo L, Fei J, Huang C, Zheng X (2003) Reforming of methane with oxygen and carbon dioxide to produce syngas over a novel Pt/CoAl2O4/Al2O3 catalyst. J Mol Catal A: Chem 193:177–184. https://doi.org/10.1016/S1381-1169(02)00453-3

    Article  CAS  Google Scholar 

  60. Reynoso AJ, Iriarte-Velasco U, Gutiérrez-Ortiz MA, Ayastuy JL (2021) Highly stable Pt/CoAl2O4 catalysts in Aqueous-Phase Reforming of glycerol. Catal Today 367:278–289. https://doi.org/10.1016/j.cattod.2020.03.039

    Article  CAS  Google Scholar 

  61. Jacobs G, Das TK, Zhang Y et al (2002) Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263–281. https://doi.org/10.1016/S0926-860X(02)00195-3

    Article  CAS  Google Scholar 

  62. Jacobs G, Ribeiro MC, Ma W et al (2009) Group 11 (Cu, Ag, Au) promotion of 15%Co/Al2O3 Fischer-Tropsch synthesis catalysts. Appl Catal A 361:137–151. https://doi.org/10.1016/j.apcata.2009.04.007

    Article  CAS  Google Scholar 

  63. Jacobs G, Ji Y, Davis BH et al (2007) Fischer-Tropsch synthesis: temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Appl Catal A 333:177–191. https://doi.org/10.1016/j.apcata.2007.07.027

    Article  CAS  Google Scholar 

  64. Yu L, Song M, Williams PT, Wei Y (2019) Alumina-supported spinel NiAl2O4 as a catalyst for re-forming pyrolysis gas. Ind Eng Chem Res 58:11770–11778. https://doi.org/10.1021/acs.iecr.9b01006

    Article  CAS  Google Scholar 

  65. Zhang J, Xu H, Jin X et al (2005) Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition. Appl Catal A 290:87–96. https://doi.org/10.1016/j.apcata.2005.05.020

    Article  CAS  Google Scholar 

  66. Salehi E, Azad FS, Harding T, Abedi J (2011) Production of hydrogen by steam reforming of bio-oil over Ni/Al2O3 catalysts: Effect of addition of promoter and preparation procedure. Fuel Process Technol 92:2203–2210. https://doi.org/10.1016/j.fuproc.2011.07.002

    Article  CAS  Google Scholar 

  67. Aranda DAG, Ramos ALD, Passos FB, Schmal M (1996) Characterization and dehydrogenation activity of Pt/Nb2O5 catalysts. Catal Today 28:119–125. https://doi.org/10.1016/0920-5861(95)00217-0

    Article  CAS  Google Scholar 

  68. Mitsui T, Tsutsui K, Matsui T et al (2008) Catalytic abatement of acetaldehyde over oxide-supported precious metal catalysts. Appl Catal B 78:158–165. https://doi.org/10.1016/j.apcatb.2007.09.017

    Article  CAS  Google Scholar 

  69. Gatla S, Aubert D, Agostini G et al (2016) Room-Temperature CO oxidation catalyst: low-temperature metal-support interaction between platinum nanoparticles and nanosized ceria. ACS Catal 6:6151–6155. https://doi.org/10.1021/acscatal.6b00677

    Article  CAS  Google Scholar 

  70. Śmiechowicz I, Kocemba I, Rogowski J, Czupryn K (2018) CO oxidation over Pt/SnO2 catalysts. React Kinet Mech Catal 124:633–649. https://doi.org/10.1007/s11144-018-1383-3

    Article  CAS  Google Scholar 

  71. Jarauta-Córdoba C, Bengoechea MO, Agirrezabal-Telleria I et al (2021) Insights into the nature of the active sites of pt-wox/al2o3 catalysts for glycerol hydrogenolysis into 1,3-propanediol. Catalysts 11:1–16. https://doi.org/10.3390/catal11101171

    Article  CAS  Google Scholar 

  72. MacIel CG, Silva TDF, Hirooka MI et al (2012) Effect of nature of ceria support in CuO/CeO2 catalyst for PROX-CO reaction. Fuel 97:245–252. https://doi.org/10.1016/j.fuel.2012.02.004

    Article  CAS  Google Scholar 

  73. MacIel CG, Silva TDF, Profeti LPR et al (2012) Study of CuO/CeO2 catalyst with for preferential CO oxidation reaction in hydrogen-rich feed (PROX-CO). Appl Catal A 431–432:25–32. https://doi.org/10.1016/j.apcata.2012.04.004

    Article  CAS  Google Scholar 

  74. Lukashuk L, Föttinger K, Kolar E et al (2016) Operando XAS and NAP-XPS studies of preferential CO oxidation on Co3O4 and CeO2-Co3O4 catalysts. J Catal 344:1–15. https://doi.org/10.1016/j.jcat.2016.09.002

    Article  CAS  Google Scholar 

  75. Oh SH, Fisher GB, Carpenter JE, Goodman DW (1986) Comparative kinetic studies of COO2 and CONO reactions over single crystal and supported rhodium catalysts. J Catal 100:360–376. https://doi.org/10.1016/0021-9517(86)90103-X

    Article  CAS  Google Scholar 

  76. Nishiyama Y, Wise H (1974) Surface interactions between chemisorbed species on platinum: carbon monoxide, hydrogen, oxygen, and methanol. J Catal 32:50–62. https://doi.org/10.1016/0021-9517(74)90157-2

    Article  CAS  Google Scholar 

  77. Watanabe M, Uchida H, Ohkubo K, Igarashi H (2003) Hydrogen purification for fuel cells: Selective oxidation of carbon monoxide on Pt-Fe/zeolite catalysts. Appl Catal B 46:595–600. https://doi.org/10.1016/S0926-3373(03)00322-9

    Article  CAS  Google Scholar 

  78. Komatsu T, Tamura A (2008) Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen. J Catal 258:306–314. https://doi.org/10.1016/j.jcat.2008.06.030

    Article  CAS  Google Scholar 

  79. Kugai J, Moriya T, Seino S et al (2013) Comparison of structure and catalytic performance of Pt-Co and Pt-Cu bimetallic catalysts supported on Al2O3 and CeO2 synthesized by electron beam irradiation method for preferential CO oxidation. Int J Hydrogen Energy 38:4456–4465. https://doi.org/10.1016/j.ijhydene.2013.01.159

    Article  CAS  Google Scholar 

  80. Kugai J, Moriya T, Seino S et al (2012) Effect of support for PtCu bimetallic catalysts synthesized by electron beam irradiation method on preferential CO oxidation. Appl Catal B 126:306–314. https://doi.org/10.1016/j.apcatb.2012.07.028

    Article  CAS  Google Scholar 

  81. Sirijaruphan A, Goodwin JG, Rice RW (2004) Effect of Fe promotion on the surface reaction parameters of Pt/γ-Al2O3 for the selective oxidation of CO. J Catal 224:304–313. https://doi.org/10.1016/j.jcat.2004.03.021

    Article  CAS  Google Scholar 

  82. Meunier G, Garin F, Schmitt JL et al (1987) Reactivity studies of automobile exhaust catalysts in presence of oxidizing or reducing conditions. Stud Surf Sci Catal 30:243–255. https://doi.org/10.1016/S0167-2991(09)60426-2

    Article  CAS  Google Scholar 

  83. Komatsu T, Takasaki M, Ozawa K et al (2013) PtCu intermetallic compound supported on alumina active for preferential oxidation of CO in hydrogen. J Phys Chem C 117:10483–10491. https://doi.org/10.1021/jp4007729

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico) and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) for financial support. The authors would like to thank RECAT/UFF (Laboratório de Cinética, Catálise e Reatores Químicos da Universidade Federal Fluminense) by XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Chagas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 364 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmal, M., Chagas, C.A. Promoter Effect of MAl2O4 (M = Co and Ni) Aluminates in the Performance of Pt/Al2O3 Catalyst for CO-PROX Reaction. Catal Lett 153, 1826–1838 (2023). https://doi.org/10.1007/s10562-022-04128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04128-7

Keywords

Navigation