Skip to main content
Log in

Palladium-Decorated Covalent Organic Framework Supported on Zinc Ferrite as Magnetic Catalyst for Suzuki Reaction and p-nitrophenol Reduction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, the synthesis of magnetic recyclable catalyst (ZnFe2O4@PDA/COF@Pd) based on palladium nanoparticles immobilized on covalent organic framework (COF) carrier and polydopamine as the linking agent for zinc ferrite (ZnFe2O4) and COF is presented. The morphology, element composition, and surface energies of the compounds were characterized. The prepared ZnFe2O4@PDA/COF@Pd exhibits excellent catalytic activity for Suzuki coupling reaction under mild conditions (TON = 4.7 × 104, TOF = 4.7 × 104 h−1). In addition, p-nitrophenol can be completely reduced within 2–9 min in the presence of NaBH4. Besides, it has remarkable promoting effect on the degradation of dyes. The above characterizations and results indicate that COF is an ideal platform for homogeneously and dispersedly immobilizing Pd NPs, which prohibit the aggregation and leaching of Pd NPs. More importantly, in the recovery of p-nitrophenol reduction reaction, the yield of p-aminophenol can still reach more than 97% after five successive cycles, demonstrating the favorable stability and durability of ZnFe2O4@PDA/COF@Pd.

Graphical Abstract

ZnFe2O4@PDA/COF@Pd showed high activity in dye degradation and Suzuki reactions. The Kapp value of ZnFe2O4@PDA/COF@Pd in the reduction of p-NP was 0.0276 s−1. Polydopamine as a linker between ZnFe2O4 and COF enhanced the stability of the catalyst structure, resulting in excellent recovery efficiency and recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Karami K, Jamshidian N, Nikazma MM, Hervés P, Shahreza AR, Karami A (2018) Appl Organomet Chem 32:3978

    Article  Google Scholar 

  2. Son SU, Jang Y, Park J, Na HB, Park HM, Yun HJ, Lee J, Hyeon T (2004) J Am Chem Soc 126:5026–5027

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez-Perez AB, Álvarez R, Faza OLN, de Lera ÁR, Aurrecoechea JM (2012) Organometallics 31:2053–2058

    Article  CAS  Google Scholar 

  4. Pacardo DB, Sethi M, Jones SE, Naik RR, Knecht MR (2009) ACS Nano 3:1288–1296

    Article  CAS  PubMed  Google Scholar 

  5. Ding S, Gao J, Wang Q, Zhang Y, Song W, Su C, Wang W (2011) J Am Chem Soc 133:19816–19822

    Article  CAS  PubMed  Google Scholar 

  6. Lebaschi S, Hekmati M, Veisi H (2017) J Colloid Interface Sci 485:223–231

    Article  CAS  PubMed  Google Scholar 

  7. Amirmahani N, Mahmoodi NO, Malakootian M, Pardakhty A (2021) Mater Chem Phys 267:124698

    Article  CAS  Google Scholar 

  8. Liu J, Zhan H, Wang N, Song Y, Wang C, Wang X, Ma L, Chen L (2021) ACS Appl Nano Mater 4:6239–6249

    Article  CAS  Google Scholar 

  9. Mohazzab BF, Jaleh B, Issaabadi Z, Nasrollahzadeh M, Varma RS (2019) Green Chem 21:3319

    Article  Google Scholar 

  10. Gniewek A (2016) J Organomet Chem 823:90–96

    Article  CAS  Google Scholar 

  11. Patel AR, Asatkar A, Patel G, Banerjee S (2019) Chemistry Select 4:5577–5584

    CAS  Google Scholar 

  12. He H, Zhu Q, Yan Y, Zhang H, Han Z, Sun H, Chen J, Li C, Zhang Z, Du M (2022) Appl Catal B Environ 302:120840

    Article  CAS  Google Scholar 

  13. Segura JL, Mancheno MJ, Zamora F (2016) Chem Soc Rev 45:5635–5671

    Article  CAS  PubMed  Google Scholar 

  14. Zhu L, Liang G, Guo C, Xu M, Wang M, Wang C, Zhang Z, Du M (2022) Food Chem 366:130575

    Article  CAS  PubMed  Google Scholar 

  15. Hao M, Li Z (2022) Appl Catal B Environ 305:121031

    Article  CAS  Google Scholar 

  16. Tao R, Shen X, Hu Y, Kang K, Zheng Y, Luo S, Yang S, Li W, Lu S, Jin Y, Qiu L, Zhang W (2020) Small 16:1906005

    Article  CAS  Google Scholar 

  17. Baran T, Sargın I, Kaya M, Mulerčikas P, Kazlauskaitė S (2018) Chem Eng J 331:102–113

    Article  CAS  Google Scholar 

  18. Wang M, Ai ZH, Zhang LZ (2008) J Phys Chem C 112:13163–13170

    Article  CAS  Google Scholar 

  19. Wang D, Astruc D (2014) Chem Rev 114:6949–6985

    Article  CAS  PubMed  Google Scholar 

  20. Postma A, Yan Y, Wang Y, Zelikin AN, Tjipto E, Caruso F (2009) Chem Mater 21:3042–3044

    Article  CAS  Google Scholar 

  21. Liu H, Yang J, Jia Y, Wang Z, Jiang M, Shen K, Zhang H, Guo YL, Guo Y, Wang L, Dai S, Zhan W (2021) Environ Sci Technol 55:10734–10743

    Article  CAS  PubMed  Google Scholar 

  22. Cui K, Zhong W, Li L, Zhuang Z, Li L, Bi J, Yu Y (2019) Small 15:1804419

    Google Scholar 

  23. Veisi H, Azizi S, Mohammadi P (2018) J Clean Prod 170:1536–1543

    Article  CAS  Google Scholar 

  24. Branton P, Bradley RH (2011) Adsorption 17:293–301

    Article  CAS  Google Scholar 

  25. Radjenovic J, Petrovic M, Ventura F, Barcelo D (2008) Water Res 42:3601–3610

    Article  CAS  PubMed  Google Scholar 

  26. Fu Y, Xu P, Huang D, Zeng G, Lai C, Qin L, Li B, He J, Yi H, Cheng M (2019) Appl Surf Sci 473:578–588

    Article  CAS  Google Scholar 

  27. Hou Y, Li X, Zhao Q, Chen G (2013) Appl Catal B Environ 142–143:80–88

    Article  Google Scholar 

  28. Bernamann F, Ball V, Addiego F, Ponche A, Michel M, Gracio JJA, Toniazzo V, Ruch D (2011) Langmuir 27:2819–2825

    Article  Google Scholar 

  29. Ma H, Kan J, Chen G, Chen C, Dong Y (2017) Chem Mater 29:6518–6524

    Article  CAS  Google Scholar 

  30. Qing W, Chen K, Wang Y, Liu X, Lu M (2017) Appl Surf Sci 423:1019–1024

    Article  CAS  Google Scholar 

  31. Sen B, Kuzu S, Demir E, Akocak S, Sen F (2017) Int J Hydrogen Energy 42:23292–23298

    Article  CAS  Google Scholar 

  32. Lolak N, Kuyuldar E, Burhan H, Goksu H, Akocak S, Sen F (2019) ACS Omega 4:6848–6853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boruah PK, Darabdhara G, Das MR (2021) Chemosphere 268:129328

    Article  CAS  PubMed  Google Scholar 

  34. Hou Y, Li XY, Zhao QD, Quan X, Chen GH (2010) Adv Func Mater 20:2165–2174

    Article  CAS  Google Scholar 

  35. Baran T, Sargin I, Kaya M, Menteş A (2016) Carbohydr Polym 152:181–188

    Article  CAS  PubMed  Google Scholar 

  36. Ziegler-Borowska M, Chełminiak D, Kaczmarek H (2015) J Therm Anal Calorim 119:499–506

    Article  CAS  Google Scholar 

  37. Du X, He J, Zhu J, Sun L, An S (2012) Appl Surf Sci 258:2717–2723

    Article  CAS  Google Scholar 

  38. Masoud N, Donoeva B, De Jongh PE (2018) Appl Catal A Gen 561:150–157

    Article  CAS  Google Scholar 

  39. Arivizhivendhan V, Mahesh M, Boopathy R, Karthikeyan S, Mary RR, Sekaran G (2018) Appl Surf Sci 427:813–824

    Article  CAS  Google Scholar 

  40. Farzad E, Veisi H (2018) J Ind Eng Chem 60:114–124

    Article  CAS  Google Scholar 

  41. Hekmati M, Bonyasi F, Javaheri H, Hemmati S (2017) Appl Organomet Chem 31:e3757

    Article  Google Scholar 

  42. Sun J, Fu Y, He G, Sun X, Wang X (2015) Appl Catal B Environ 165:661–667

    Article  CAS  Google Scholar 

  43. Liu Y, Bai X (2016) Appl Organomet Chem 31:e3561

    Article  Google Scholar 

  44. Ghiaci M, Zarghani M, Moeinpour F, Khojastehnezhad A (2014) Appl Organometal Chem 28:589–594

    Article  CAS  Google Scholar 

  45. Amirmahani N, Mahmoodi N, Malakootian M, Pardakhty A, Seyedi N (2021) Mater Chem Phys 267:124698

    Article  CAS  Google Scholar 

  46. Pandey S, Mishra S (2014) Carbohyd Polym 113:525–531

    Article  CAS  Google Scholar 

  47. Xu Y, Shi X, Hua R, Zhang R, Yao Y, Zhao B, Liu T, Zheng J, Lu G (2020) Appl Catal B: Environ 260:118142

    Article  CAS  Google Scholar 

  48. Qin L, Huang D, Xu P, Zeng G, Lai C, Fu Y, Yi H, Li B, Zhang C, Cheng M, Zhou C, Wen X (2018) J Colloid Interface Sci 534:357–369

    Article  PubMed  Google Scholar 

  49. Xue Y, Lu X, Bian X, Lei J, Wang C (2012) J Colloid Interface Sci 379:89–93

    Article  CAS  PubMed  Google Scholar 

  50. Su C, Zhao S, Wang P, Chang W, Chang K, Zhang H (2016) J Environ Chem Eng 4:3433–3440

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Fundamental Research Funds for the Central Universities (N2105005), Scientific Research Fund project of Ningde Normal University (2020Z02)and Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiyang Yan or Jianshe Hu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1527 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, K., Yan, G., Wang, G. et al. Palladium-Decorated Covalent Organic Framework Supported on Zinc Ferrite as Magnetic Catalyst for Suzuki Reaction and p-nitrophenol Reduction. Catal Lett 153, 2959–2974 (2023). https://doi.org/10.1007/s10562-022-04113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04113-0

Keywords

Navigation